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PREFACE

As scientists and practitioners, we often want to create generalizable,
causal theories of human behavior. As it turns out, experiments – in
which we use random assignment to measure a causal effect – are an
unreasonably effective tool to help with this task. But how should we
go about doing good experiments?
This book provides an introduction to the workflow of the experimen-
tal researcher working in psychology or the behavioral sciences more
broadly. The organization of the book is sequential, from the plan-
ning stages of the research process through design, data gathering, anal-
ysis, and reporting. We introduce these concepts via narrative examples
from a range of sub-disciplines, including cognitive, developmental, and
social psychology. Throughout, we also illustrate the pitfalls that led to
the “replication crisis” in psychology.
To help researchers avoid these pitfalls, we advocate for an open-science
based approach in which transparency is integral to the entire experi-
mental workflow. We provide readers with guidance for preregistra-
tion, project management, data sharing, and reproducible report writ-
ing.

The story of this book
Experimental Methods (Psych 251) is the foundational course for in-
coming graduate students in the Stanford psychology department. The
course goal is to orient students to the nuts and bolts of doing behav-
ioral experiments, including how to plan and design a solid experiment
and how to avoid common pitfalls regarding design, measurement, and
sampling.
Almost all student coursework both before and in graduate school deals
with the content of their research, including theories and results in their
areas of focus. In contrast, our course is sometimes the only one that
deals with the process of research, from big questions about why we do
experiments and what it means to make a causal inference, all the way
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to the tiny details of project organization, like what to name your di-
rectories and how to make sure you don’t lose your data in a computer
crash.
This observation leads to our book’s title. “Experimentology” is the
set of practices, findings, and approaches that enable the construction of
robust, precise, and generalizable experiments.
The centerpiece of the Experimental Methods course is a replication
project, reflecting a teaching model first described in Frank and Saxe
(2012)1 and later expanded on in Hawkins, Smith et al. (2018).2 Each
student chooses a published experiment in the literature and collects
newdata on a pre-registered version of the same experimental paradigm,
comparing their result to the original publication. Over the course of
the quarter, we walk through how to set up a replication experiment,
how to pre-register confirmatory analyses, and how to write a repro-
ducible report on the findings. The project teaches concepts like re-
liability and validity, which allow students to analyze choices that the
original experimentersmade – often choices that could have beenmade
differently in hindsight!
At the end of the course, we reap the harvest of these projects. The
project presentations are a wonderful demonstration of both how much
the students can accomplish in a quarter and also how tricky it can be to
reproduce (redo calculations in the original data) and replicate (recover
similar results in new data) the published literature. Often our repli-
cation success rate for the course hovers just above 50%, an outcome
that can be disturbing or distressing for students who assume that the
published literature reports the absolute truth.
This book is an attempt to distill some of the lessons of the course (and
students’ course projects) into a textbook. We’ll tell the story of the
major shifts in psychology that have come about in the last ten years,
including both the “replication crisis” and the positive methodological
reforms that have resulted from it. Using this story as motivation, we
will highlight the importance of transparency during all aspects of the
experimental process from planning to dissemination of materials, data,
and code.

What this book is and isn’t about
This book is about psychology experiments. These will be typically be
short studies conducted online or in a single visit to a lab, often – though
certainly not always – with a convenience sample. When we say “ex-
periments” here we mean randomized experiments where some aspect
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3 We use bold to indicate the introduc-
tion of new technical terms.

4 If you are an instructor who is plan-
ning to adopt the book for a course,
you might be interested in our resources
for instructors, including sample course
schedules, in Appendix A.

of the participants’ experience ismanipulated by the experimenter and
then some outcome variable is measured.3

The central thesis of the book is that:

Experiments are intended to make maximally unbiased,
generalizable, and precise estimates of specific causal
effects.

We’ll explore the implications of this thesis for a host of topics, includ-
ing causal inference, experimental design, measurement, sampling, pre-
registration, data analysis, and many others.
Because our focus is on experiments, we won’t be talking much about
observational designs, survey methods, or qualitative research; these
are important tools and appropriate for a whole host of questions, but
they aren’t our focus here. We also won’t go into depth about the
many fascinating methodological and statistical issues brought up by
single-participant case studies, longitudinal research, field studies, or
other methodological variants. Many of the concerns we raise are still
important for these types of studies, but some of our advice won’t trans-
fer to these less common designs.
Even for students who are working on non-experimental research, we
expect that a substantial part of the book content will still be useful, in-
cluding chapters on replication (Chapter 3), ethics (Chapter 4), statistics
(Chapters 5, 6, 7), sampling (Chapter 10), project management (Chap-
ter 13), and reporting (Chapters 14, 15, 16).
In our writing, we presuppose that readers have some background in
psychology, at least at an introductory level. In addition, although we
introduce a number of statistical topics, readers might find these sections
more accessible with an undergraduate statistics course under their belt.
Finally, our examples are written in the R statistical programming lan-
guage, and for chapters on statistics and visualization especially (Chap-
ters 5, 6, 7, 15, 16), some familiarity with R will be helpful for under-
standing the code. None of these prerequisites are necessary to read
the book, but we offer them so that readers can calibrate their expecta-
tions.

How to use this book
The book is organized into five main parts, mirroring the timeline of
an experiment: 1) Foundations, 2) Statistics, 3) Planning, 4) Execution,
and 5) Reporting. We hope that this organization makes it well-suited
for teaching or for use as a reference book.4
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The book is designed for a course for graduate students or advanced
undergraduates, but the material is also suitable for self-study by anyone
interested in experimental methods, whether in academic psychology
or any other context – in our out of academia – in which behavioral
experimentation is relevant. We also hope that some readers will come
to particular chapters of the book because of an interest in specific topics
like measurement (Chapter 8) or sampling (Chapter 10) andwill be able
to use those chapters as standalone references. And finally, for those
interested in the “replication crisis” and subsequent reforms, Chapters
3, 11, and 13 will be especially interesting.
Ultimately, we want to give you what you need to plan and execute
your own study! Instead of enumerating different approaches, we try to
provide a single coherent – and often quite opinionated – perspective,
using marginal notes and references to give pointers to more advanced
materials or alternative approaches. Throughout, we offer:

– Case studies that illustrate the central concepts of a chapter,
– Accident reports describing examples where poor research prac-

tices led to issues in the literature, and
– Depth boxes providing simulations, linkages to advanced tech-

niques, or more nuanced discussion.

While case studies are often integral to the chapters, the other boxes
can typically be skipped without issue.

Themes
We highlight four major cross-cutting themes for the book: TRANS-
PARENCY, MEASUREMENT PRECISION, BIAS REDUCTION, and GENERALIZ-
ABILITY.5

– TRANSPARENCY: For experiments to be reproducible, other
researchers need to be able to determine exactly what you did.
Thus, every stage of the research process should be guided by a
primary concern for transparency. For example, preregistration
creates transparency into the researcher’s evolving expectations
and thought processes; releasing open materials and analysis
scripts creates transparency into the details of the procedure.

– MEASUREMENT PRECISION: We want researchers to start planning
an experiment by thinking “what causal effect do I want to
measure” and to make planning, sampling, design, and analytic
choices that maximize the precision of this measurement. A
downstream consequence of this mindset is that we move away
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at https://experimentology.io but not in
the print version of the book, since their
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desktop/
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from a focus on dichotomized inferences about statistical signifi-
cance and towards analytic and meta-analytic models that focus
on continuous effect sizes and confidence intervals.

– BIAS REDUCTION: While precision refers to random error in amea-
surement, measurements also have systematic sources of error that
bias them away from the true quantity. In our samples, analyses,
experimental designs, and in the literature, we need to think care-
fully about sources of bias in the quantity being estimated.

– GENERALIZABILITY: Complex behaviors are rarely universal across
all settings and populations, and any given experiment can only
hope to cover a small slice of the possible conditions where a be-
havior of interest takes place. Psychologists must therefore con-
sider the generalizability of their findings at every stage of the
process, from stimulus selection and sampling procedures, to ana-
lytic methods and reporting.

Throughout the book, we will return to these four themes again and
again as we discuss how the decisions made by the experimenter at ev-
ery stage of design, data gathering, and analysis bear on the inferences
that can be made about the results. The introduction of each chapter
highlights connections to specific themes.

The software toolkit for this book
We introduce and advocate for an approach to reproducible study plan-
ning, analysis, and writing. This approach depends on an ecosystem of
open-source software tools, which we introduce in the book’s appen-
dices.6

– The R statistical programming language and the RStudio7 inte-
grated development environment,

– Version control using git andGitHub8, allowing collaboration on
text documents like code, prose, and data, storing and integrating
contributions over time (Appendix B),

– The RMarkdown and Quarto tools for creating reproducible re-
ports that can be rendered to a variety of formats (Appendix C),

– The tidyverse family of R packages, which extend the basic
functionality of R with simple tools for data wrangling, analysis,
and visualization (Appendix D), and

– The ggplot2 plotting package, which makes it easy to create
flexible data visualizations for both confirmatory and exploratory
data analyses (Appendix E).

https://experimentology.io
https://posit.co/download/rstudio-desktop/
https://posit.co/download/rstudio-desktop/
https://github.com/
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9 The best way to give us specific
feedback is to create an issue on our
github page at https://github.com/
langcog/experimentology/issues.

10 Learn more at https://credit.niso.
org/.

Where appropriate, we provide code boxes that show the specific R
code used to create our examples.

Onward!
Thanks for joining us for Experimentology! Whether you are casu-
ally browsing, doing readings for a course, or using the book as a ref-
erence in your own experimental work, we hope you find it useful.
Throughout, we have tried to practice what we preach in terms of re-
producibility, and so the full source code for the book is available at
https://github.com/langcog/experimentology. We encourage you to
browse, comment, and log issues or suggestions.9
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PART I

FOUNDATIONS



1 Perhaps you’re already saying, “that’s
not what I thought experiments were
for! I thought they were for testing hy-
potheses.” Bear with us and we hope
we’ll convince you that our definition is
a bit more general, and that testing a hy-
pothesis is one thing you can do with a
measurement.

2 Defining causality is one of the trick-
iest and oldest problems in philosophy,
and we won’t attempt to solve it here!
But from a psychological perspective,
we’re fond of Lewis (1973)’s “counter-
factual” analysis of causality. On this
view, we can understand the claim that
money causes happiness by considering a
scenario where if people hadn’t been
given more money, they wouldn’t have
experienced an increase in happiness.

1 EXPERIMENTS

🍏 LEARNING GOALS

– Define what an experiment is
– Contrast observational and experimental studies using causal graphs
– Understand the role of randomization in experiments
– Consider constraints on the generalizability of experiments

Welcome to Experimentology! This is a book all about the art of run-
ning experiments in psychology. Throughout, we will be guided by a
simple idea:

The purpose of experiments is to estimate the magnitude
of causal effects.1

Starting from our core idea, we’ll provide advice about how to navi-
gate things like experimental design, measurement, sampling, and more.
Our decisions about each of these will determine how precise our es-
timate is, and whether it is subject to bias. But before we get to those
topics, let’s start by thinking about why we might do an experiment, a
topic that will intersect with our key themes of BIAS REDUCTION and
GENERALIZABILITY.

1.1 Observational studies don’t reveal causality
If you’re reading this book, there’s probably something about psychol-
ogy you want to understand. How is language learned? How is it that
we experience emotions like happiness and sadness? Why do humans
sometimes work together and other times destroy one another? When
psychologists study these centuries-old questions, they often transform
them into questions about causality.2

1.1.1 Describing causal relationships
Consider the age-old question: does money make people happy? This
question is – at its heart – a question about what interventions on the



1 EXPERIMENTS 14

Figure 1.1: The hypothesized causal ef-
fect of money on happiness.
3 In this chapter, we’re going to use the
term “variables”without discussingwhy
we study some variables and not others.
In the next chapter, we’ll introduce the
term “construct,” which indicates a psy-
chological entity that we want to theo-
rize about.

Figure 1.2: Three reasons why money
and happiness can be correlated.

world we can make. Can I get more money and make myself happier?
Can I cause happiness with money?
How could we test our hypothesized effect of money on happiness?
Intuitively, many people think of running an observational study. We
might survey people about howmuchmoney theymake and howhappy
they are. The result of this study would be a pair of measurements for
each participant: [money, happiness].
Now, imagine your observational study found that money and happi-
ness were related – statistically correlated with one another: people
with more money tended to be happier. Can we conclude that money
causes happiness? Not necessarily. The presence of a correlation does
not mean that there is a causal relationship!
Let’s get a bit more precise about our causal hypothesis. To illustrate
causal relationships, we can use a tool called directed acyclic graphs
(DAGs, Pearl 1998). Figure 1.1 shows an example of a DAG for money
and happiness: the arrow represents our idea about the potential causal
link between two variables: money and happiness.3 The direction of
the arrow tells us which way we hypothesize that the causal relation-
ship goes.
The correlation between money and happiness we saw in our observa-
tional study is consistent with the causal model in Figure 1.1; however,
it is also consistent with several alternative causal models, which we will
illustrate with DAGs below.

1.1.2 The problems of directionality and confounding
Figure 1.2 uses DAGs to illustrate several causal models that are consis-
tent with the observed correlation between money and happiness. DAG
1 represents our hypothesized relationship – money causes people to be
happy. But DAG 2 shows an effect in completely the opposite direction!
In this DAG, being happy causes people to make more money.
Even more puzzling, there could be a correlation, but no causal relation-
ship between money and happiness in either direction. Instead, a third
variable – often referred to as a confound – may be causing increases in
both money and happiness. For example, maybe having more friends
causes people to both be happier and make more money (DAG 3). In
this scenario, happiness and money would be correlated even though
one does not cause the other.
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4 People sometimes ask whether causa-
tion implies correlation (the opposite di-
rection). The short answer is “also no.”
A causal relationship between two vari-
ables oftenmeans that they will be corre-
lated in the data, but not always. For ex-
ample, imagine you measured the speed
of a car and the pressure on the gas
pedal / accelerator. In general, pres-
sure and speed will be correlated, con-
sistent with the causal relationship be-
tween the two. But now imagine you
only measured these two variables when
someone was driving the car up a hill –
now the speed would be constant, but
the pressure might be increasing, reflect-
ing the driver’s attempts to keep their
speed up. So there would be no corre-
lation between the two variables in that
dataset, despite the continued causal re-
lationship.
5 In fact, DAGs are one of the key tools
that social scientists use to reason about
causal relationships. DAGs guide the cre-
ation of statistical models to estimate par-
ticular causal effects from observational
data. We won’t talk about these meth-
ods here, but if you’re interested, check
out the suggested readings at the end of
this chapter.

A confound (or several) may entirely explain the relationship between
two variables (as in DAG #3); but it can also just partly explain the re-
lationship. For example, it could be that money does increase happi-
ness, but the causal effect is rather small, and only accounts for a small
portion of the observed correlation between them, with the friendship
confound (and perhaps others) accounting for the remainder.
In this case, because of the confounds, we say that the observed corre-
lation between money and happiness is a biased estimate of the causal
effect of money on happiness. The amount of bias introduced by the
confounds can vary in different scenarios – it may only be small, or it
may be so strong that we conclude there’s a causal relationship between
two variables when there isn’t one at all.
The state of affairs summarized in Figure 1.2 is why we say “correlation
doesn’t imply causation.” A correlation between two variables is consis-
tent with a causal relationship between them, but it’s also consistent with
other relationships as well.4

You can still learn about causal relationships from observational stud-
ies, but you have to take a more sophisticated approach. You can’t just
measure correlations and leap to causal conclusions. The “causal rev-
olution” in the social sciences has been fueled by the development of
statistical methods for reasoning about causal relationships from obser-
vational datasets.5 As interesting as these methods are, however, they
are only applicable in certain specific circumstances. In contrast, the
experimental method always works to reduce bias due to confounding
(though of course there are certain experiments that we can’t do for
ethical or practical reasons).

1.2 Experiments help us answer causal questions
Imagine that you (a) created an exact replica of our world, (b) gave
$1,000 to everybody in the replica world, and then (c) found a few years
later that everyone in the replica world was happier than their matched
self in the original world. This experiment would provide strong evi-
dence that money makes people happier. Let’s think through why.
Consider a particular person – if they are happier in the replica vs. orig-
inal world, what could explain that difference? Since we have repli-
cated the world exactly, but made only one change –money – then that
change is the only factor that could explain the difference in happiness.
We can say that we held all variables constant except for money, which
wemanipulated experimentally, observing its effect on somemeasure –
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6 Another way to reason about why we
can infer causality here follows the coun-
terfactual logic we described in an earlier
footnote. If the definition of causality is
counterfactual (“what would have hap-
pened if the cause had been different”),
then this experiment fulfills that defi-
nition. In our impossible experiment,
we can literally see the counterfactual: if
the person had $1,000 more, here’s how
much happier they would be!

Figure 1.3: In principle, experiments al-
lows us to “snip away” the friend con-
found by holding it constant (though in
practice, it can be tough to figure out
how to hold something constant when
you are talking about people as your unit
of study).

7 Many researchers who have seen re-
gression models used in the social sci-
ences assume that “controlling for lots of
stuff” is a good way to improve causal
inference. Not so! In fact, inappropri-
ately controlling for a variable in the ab-
sence of a clear causal justification can ac-
tually make your effect estimate more bi-
ased (Wysocki, Lawson, and Rhemtulla
2022).

happiness. This idea – holding all variables constant except for the spe-
cific experimental manipulation – is the basic logic that underpins the
experimental method (as articulated by Mill 1882).6 Let’s think back to
our observational study of money and happiness. One big causal infer-
ence problem was the presence of “third variable” confounds like hav-
ing more friends. More friends could cause you to have more money
and also cause you to be happier. The idea of an experiment is to hold
everything else constant – including the number of friends that people
have – so we can measure the effect of money on happiness. By holding
number of friends constant, we would be severing the causal links be-
tween friends and both money and happiness. This move is graphically
conveyed in Figure 1.3, where we “snip away” the friend confound.

1.2.1 We can’t hold people constant
This all sounds great in theory, you might be thinking, but we can’t
actually create replica worlds where everything is held constant, so how
do we run experiments in the real world? If we were talking about
experiments on baking cakes, it’s easy to see how we could hold all of
the ingredients constant and just vary one thing, like baking temperature.
Doing so would allow us to conduct an experimental test of the effect of
baking temperature. But how we can “hold something constant” when
we’re talking about people? People aren’t cakes. No two people are
alike and, as every parent with multiple children knows, even if you try
to “hold the ingredients constant” they don’t come out the same!
If we take two people and give one money, we’re comparing two differ-
ent people, not two instances of the same person with everything held
constant. It wouldn’t work to make the first person have more or fewer
friends so they match the second person – that’s not holding anything
constant, instead it’s another (big, difficult, and potentially unethical)
intervention that might itself cause lots of effects on happiness.
Youmay bewondering: why don’t we just ask people howmany friends
they have and use this information to split them into equal groups? You
could do that, but this kind of strategy only allows you to control for
the confounds you know of. For example, you may split people equally
based on their number of friends, but not their education attainment. If
educational attainment also impacts both money and happiness, you still
have a confound. You may then try to split people by both their num-
ber of friends and their education. But perhaps there’s another con-
found you’ve missed: sleep quality! Similarly, it also doesn’t work to
select people who have the same number of friends – that only holds
the friends variable constant and not everything else that’s different be-
tween the two people. So what do we do instead?7
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Figure 1.4: If you randomly split a large
group of people into groups, the groups
will, on average, be equal in every way.

8 You may already be protesting that
this experiment could be done better.
Maybe we could measure happiness be-
fore and after randomization, to increase
precision. Maybewe need to give a small
amount of money to participants in the
control condition to make sure that par-
ticipants in both conditions interact with
an experimenter and hence that the con-
ditions are as similar as possible. We
agree! These are important parts of ex-
perimental design, and we’ll touch on
them in subsequent chapters.

9 There’s an important caveat to this
discussion: you don’t always have to
randomize people. You can use an
experimental design called a within-
participants design, in which the same
people are in multiple conditions. This
type of design has a different set of un-
known confounds, this time centering
around time. So, to get around them, you
have to randomize the order in which
yourmanipulation is delivered. This ran-
domization works very well for some
kinds of manipulations, but not so well
for others. We’ll talk more about these
kinds of designs in Chapter 9.

1.2.2 Randomization saves the day
The answer is randomization. If you randomly split a large roomful
of people into two groups, the groups will, on average, have a similar
number of friends. Similarly, if you randomly pick who in your experi-
ment gets to receivemoney, youwill find that themoney and no-money
groups, on average, have a similar number of friends. In other words,
through randomization, the confounding role of friends is controlled.
But the most important thing is that it’s not just the role of friends that’s
controlled; educational attainment, sleep quality, and all the other con-
founds are controlled as well. If you randomly split a large group of
people into groups, the groups will, on average, be equal in every way
(Figure 1.4).
So, here’s our simple experimental design: we randomly assign some
people to amoney group and some people to a no-money control group!
(We sometimes call these groups conditions). Then we measure the
happiness of people in both groups. The basic logic of randomization
is that, if money causes happiness, we should see more happiness – on
average – in the money group.8

Randomization is a powerful tool, but there is a caveat: it doesn’t work
every time. On average, randomization will ensure that your money and
no-money groups will be equal with respect to confounds like number
of friends, education attainment, and sleep quality. But just as you can
flip a coin and sometimes get heads 9 out of 10 times, sometimes you use
randomization and still get more highly-educated people in one condi-
tion than the other. When you randomize, you guarantee that, on aver-
age, all confounds are controlled. Hence, there is no systematic bias in
your estimate from these confounds. But there will stil be some noise
from random variation.
In sum, randomization is a remarkably simple and effective way of hold-
ing everything constant besides a manipulated variable. In doing so,
randomization allows experimental psychologists to make unbiased es-
timates of causal relationships. Importantly, randomization works both
when you do have control of every aspect of the experiment – likewhen
you are baking a cake – and even when you don’t – like when you are
doing experiments with people.9



1 EXPERIMENTS 18

 DEPTH

Unhappy randomization?
As we’ve been discussing, random assignment removes confounding by ensuring that – on average – groups are
equivalent with respect to all of their characteristics. Equivalence for any particular random assignment is more
likely the larger your sample is, however. Any individual experiment may be affected by unhappy randomization,
when a particular confound is unbalanced between groups by chance.
Unhappy randomization is much more common in small experiments than larger ones. To see why, we use a
technique called simulation. In simulations, we invent data randomly following a set of assumptions: we make up a
group of participants and generate their characteristics and their condition assignments. By varying the assumptions
we use, we can investigate how particular choices might change the structure of the data.
To look at unhappy randomization, we created many simulated versions of our money-happiness experiment, in
which an experimental group receives money and the control group receives none, and then happiness is measured
for both groups. We assume that each participant has a set number of friends, and that the more friends they have,
the happier they are. So when we randomly assign them to experimental and control groups, we run the risk of
unhappy randomization – sometimes one group will have substantially more friends than the other.

Figure 1.5: Simulated data from our money-happiness experiment. Each dot represents the measured happiness effect (vertical
position) for an experiment with a set number of participants in each group (horizontal position). Dot color shows how uneven
friendship is between the groups. The dashed line shows the true effect.

Figure 1.5 shows the results of this simulation. Each dot is an experiment, representing one estimate of the happiness
effect (how much happiness is gained for the amount of money given to the experimental group). For very small
experiments (e.g., with 1 or 3 participants per group), dots are very far from the dashed line showing the true effect
– meaning these estimates are extremely noisy! And the reason is unhappy randomization. The upper and lower
points are those in which one group had far more friends than the other.
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There are three things to notice about this simulation. First, the noise overall goes down as the sample sizes get
bigger: larger experiments yield estimates closer to the true effect. Second, the unhappy randomization decreases
dramatically as well with larger samples. Although individuals still differ just as much in large experiments, the
group average number of friends is virtually identical for each condition in the largest groups.
Finally, although the small experiments are individually very noisy, the average effect across all of the small experi-
ments is still very close to the true effect. This last point illustrates what we mean when we say that randomized
experiments remove confounds. Even though friendship is still an important factor determining happiness in our
simulation, the average effect across experiments is correct and each individual estimate is unbiased.

1.3 Generalizability
When we are asking questions about psychology, it’s important to think
about who we are trying to study. Do we want to know if money in-
creases happiness in all people? In people who live in materialistic so-
cieties? In people whose basic needs are not being met? We call the
group we are trying to study our population of interest, and the people
who actually participate in our experiment our sample. The process of
sampling is then what we do to recruit people into our experiment.
Sometimes researchers sample from one population, but make a claim
about another (usually broader) population. For example, they may run
their experiment with a particular sample of U.S. college students, but
then generalize to all people (their intended population of interest). The
mismatch of sample and population is not always a problem, but quite
often causal relationships are different for different populations.
Unfortunately, psychologists pervasively assume that research on U.S.
and European samples generalizes to the rest of the world, and it of-
ten does not. To highlight this issue, Henrich, Heine, and Norenzayan
(2010) coined the acronym WEIRD. This catchy name describes the
oddness of making generalizations about all of humanity from exper-
iments on a sample that is quite unusual because it is Western, Edu-
cated, Industrialized, Rich, and Democratic. Henrich and colleagues
argue that seemingly “fundamental” psychological functions like visual
perception, spatial cognition, and social reasoning all differ pervasively
across populations – hence, any generalization from an effect estimated
with a WEIRD sub-population may be unwarranted.
In the early 2000’s, researchers found that gratitude interventions – like
writing a brief essay about something nice that somebody did for you –
increased happiness in studies conducted inWestern countries. Based on
these findings, some psychologists believed that gratitude interventions
could increase happiness in all people. But it seems they were wrong.
A few years later, Layous et al. (2013) ran a gratitude experiment in
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two locations: the U.S. and South Korea. Surprisingly, the gratitude
intervention decreased happiness in the South Korean sample. The re-
searchers attributed this negative effect to feelings of indebtedness that
people in South Korea more prominently experienced when reflecting
on gratitude. In this example, we would say that the findings obtained
with the U.S. sample may not generalize to people in South Korea.
Issues of generalizability extend to all aspects of an experiment, not just
its sample. For example, even if our hypothetical cash intervention ex-
periment resulted in gains in happiness, we might not be warranted in
generalizing to different ways of providing money. Perhaps there was
something special about the amount of money we gave or the way we
provided it that led to the effect we observed. Without testing multiple
different intervention types, we can’t make a broad claim. As we’ll see
in Chapter 7 and Chapter 9, this issue has consequences for both our
statistical analyses and our experimental designs (Yarkoni 2020).
Questions of generalizability are pervasive, but the first step is to simply
acknowledge and reason about them. Perhaps all papers should have a
Constraints on Generality statement, where researchers discuss whether
they expect their findings to generalize across different samples, exper-
imental stimuli, procedures, and historical and temporal features (Si-
mons, Shoda, and Lindsay 2017). This kind of statement would at least
remind researchers to be humble: experiments are a powerful tool for
understanding how the world works, but there are limits to what any
individual experiment can teach us.

1.4 Anatomy of a randomized experiment

Figure 1.6: Anatomy of a randomized
experiment.

Now is a good time for us to go back and consolidate the anatomy of
an experiment, since this anatomy is used throughout the book. Fig-
ure 1.6 shows a simple two-group experiment like our possible money-
happiness intervention. A sample is taken from a larger population, and
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then participants in the sample are randomly assigned to one of two
conditions (the manipulation) – either the experimental condition, in
which money is provided, or the control condition, in which none is
given. Then an outcome measure – happiness – is recorded for each
participant.
We’ll have a lot more to say about all of these components in subsequent
chapters. We’ll discuss measures in Chapter 8, because good measure-
ment is the foundation of a good experiment. Then in Chapter 9 we’ll
discuss the different kinds of experimental designs that are possible and
their pros and cons. Finally, we’ll cover the process of sampling in Chap-
ter 10.

 ACCIDENT REPORT

An experiment with very unclear causal inferences
The Stanford Prison Experiment is one of the most famous studies in the history of psychology. Participants were
randomly assigned to play the role of “guards” and “prisoners” in a simulation of prison life inside the Stanford
Psychology building (Zimbardo 1972). Designed to run for two weeks, the simulation had to be ended after six
days due to the cruelty of the participants acting as guards, who apparently engaged in a variety of dehumanizing
behaviors towards the simulated prisoners. This result is widely featured in introductory psychology textbooks
and is typically interpreted as showing the power of situational factors: in the right context, even undergraduate
students at Stanford could quickly be convinced to act out the kind of inhumane behaviors found in the worst
prisons in the world (Griggs 2014).
In the years since the study was initially reported, a variety of information has surfaced that makes the causal
interpretation of its situational manipulation much less clear (Le Texier 2019). Guards were informed of the objec-
tives of the experiment and given instructions on how to achieve these objectives. The experimenters themselves
suggested some harsh punishments whose later use was given as evidence for the emergence of dehumanizing be-
haviors. Further, both guards and prisoners were coached extensively by the experimenter throughout the study.
Some participants have reported that their responses during the study were exaggerated or fabricated (Blum 2018).
All of these issues substantially undermine the idea that the assignment of participants’ roles (the ostensible experi-
mental manipulation) was the sole cause of the observed behaviors.
The conduct of the study was also unethical. In addition to the question of whether such a study – with all of its
risks to the participants – would be ethical at all, a number of features of the study clearly violate the guidelines
that we’ll learn about in Chapter 4. Participants were prevented from exiting the study voluntarily. The guards
were deceived into believing that they were research assistants, rather than participants in the study. And to top it
off, the study was reported inaccurately, with reports emphasizing the organic emergence of behaviors, the immer-
sive nature of the simulation, and the extensive documentation of the experiment. In fact, the participants were
instructed extensively, the simulation was repeatedly interrupted by mundane details of the research environment,
and relatively little of the experiment was captured on video and analyzed.
The Prison Experiment is a fascinating and problematic episode in the history of psychology, but it provides very
little causal evidence about the human mind.
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1.5 Chapter summary: Experiments
In this chapter, we defined an experiment as a combination of a ma-
nipulation and a measure. When combined with randomization, ex-
periments allow us to make strong causal inferences, even when we are
studying people (who are hard to hold constant). Nonetheless, there are
limits to the power of experiments: there are always constraints on the
sample, experimental stimuli, and procedure that limit how broadly we
can generalize.

DISCUSSION QUESTIONS

1. Imagine that you run a survey and find that people who spend more time playing violent video games tend to be
more aggressive (i.e., that there is a positive correlation between violent video games and aggression). Following
Figure 1.2, list three reasons why these variables may be correlated.

2. Suppose you wanted to run an experiment testing whether playing violent video games causes increases in
aggression. What would be your manipulation and what would be your measure? How would you deal with
potential confounding by variables like age?

3. Consider an experiment designed to test people’s food preferences. The experimenter randomly assigns 30 U.S.
preschoolers to be served either asparagus or chicken tenders and then asks them how much they enjoyed their
meal. Overall, children enjoyed the meat more; the experimenter writes a paper claiming that humans prefer
meat over vegetables. List some constraints on the generalizability of this study. In light of these constraints, is
this study (or some modification) worth doing at all?

4. Consider the Milgram study, another classic psychology study (and our case study in Chapter 4). Does this
study meet our definition of an experiment?

READINGS

– A basic introduction to causal inference from a social science perspective: Huntington-Klein, N. (2022). The
Effect: An Introduction to Research Design and Causality. Chapman & Hall. Available free online at https:
//theeffectbook.net.

– A slightly more advanced treatment, focusing primarily on econometrics: Cunningham, S. (2021). Causal Infer-
ence: The Mixtape. Yale Press. Available free online at https://mixtape.scunning.com.
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2 THEORIES

🍏 LEARNING GOALS

– Define theories and their components
– Contrast different philosophical views on scientific theories
– Analyze features of an experiment that can lead to strong tests of theory
– Discuss the role of formalization in theory development

When you do an experiment, sometimes you just want to see what hap-
pens, like a kid knocking down a tower made of blocks. And sometimes
you want to know the answer to a specific applied question, like “will
giving a midterm vs. weekly quizzes lead students in a class to perform
better on the final?” But more often, our goal is to create theories that
help us explain and predict new observations.
What is a theory? We’ll argue here that we should think of psycholog-
ical theories as sets of proposed relationships among constructs, which
are variables that we think play causal roles in determining behavior. In
this conception of theories, the role of causality is central: theories are
guesses about the causal structure of the mind and about the causal re-
lationships between the mind and the world. This definition doesn’t
include everything that gets called a “theory” in psychology. We de-
scribe the continuum between theories and frameworks – broad sets of
ideas that guide research but don’t make specific contact with particular
empirical observations.
We begin this chapter by talking about the specific enterprise of con-
structing psychological theories. We’ll then discuss how theories make
contact with data, reviewing a bit of the philosophy of science, and give
some guidance on how to construct experiments that test theories. We
end by discussing the relationship between theories and quantitative
models. This material touches on several of our book themes, includ-
ing GENERALIZABILITY of theories and the need for MEASUREMENT PRE-
CISION to make strong tests of theory.
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2.1 What is a psychological theory?
The definition we just gave for a psychological theory is that it is a pro-
posed set of causal relationships among constructs that helps us explain
behavior. Let’s look at the ingredients of a theory: the constructs and
the relationships between them. Then we can ask about how this defi-
nition relates to other things that get called “theories” in psychology.

2.1.1 Psychological constructs
Constructs are the psychological variables that we want our theory to
describe, like “money” and “happiness” in the example from last chap-
ter. At first glance, it might seem odd that we need a specific name for
these variables. But in probing the relationship between money and
happiness, we will have to figure out a way to measure happiness. Let’s
say we just ask people to answer the question “how happy are you?” by
giving ratings on a 1 (miserable) to 10 (elated) scale.
Now say someone in the study reports they are an 8 on this scale. Is this
really how happy they are? What if they weren’t concentrating very
hard on the rating, or if they thought the researcher wanted them to
be happy? What if they act much less happy in their interactions with
family and friends?
We resolve this dilemma by saying that the self-report ratings we collect
are only a measure of a latent construct, happiness. The construct is
latent because we can never see it directly, but we think it has a causal
influence on the measure: happier people should, on average, provide
higher ratings. But many other factors can lead to noise or bias in the
measurement, so we shouldn’t mistake those ratings as actually being the
construct.
The particular question “how happy are you?” is oneway of going from
the general construct to a specific measure. The general process of go-
ing from construct to a specific instantiation that can be measured or
manipulated is called operationalization. Happiness can be operational-
ized by self-report, but it can also be operationalized many other ways,
for example through a measure like the use of positive language in a
personal essay, or by ratings by friends, family, or a clinician. These de-
cisions about how to operationalize a construct with a particular mea-
sure are tricky and consequential, and we discuss them extensively in
Chapter 8. Each different operationalization might be appropriate for a
specific study, yet it would require some justification and argument to
connect each one to the others.



2 THEORIES 26

1 Sometimes positing the construct is the
key part of a theory. g (general intel-
ligence) is the classic psychological ex-
ample of a single-construct theory. The
idea behind g theory is that the best mea-
sure of general intelligence is the shared
variance between a wide variety of dif-
ferent tests. The decision to theorize
about and measure a single unified con-
struct for intelligence – rather than say,
many different separate kinds of intelli-
gence – is itself a controversial move.

2 Sometimes these kind of diagrams
are used in the context of a statistical
method called Structural Equation Mod-
eling, where circles represent constructs
and lines represent their relationships
with one another. Confusingly, struc-
tural equation models are also used by
many researchers to describe psycholog-
ical theories. The important point for
now is that they are one particular sta-
tistical formalism, not a general tool for
theory building – the points we are try-
ing to make here are more general.
3 We’re not saying these should corre-
spond to specific brain structures. They
could, but most likely they won’t. The
idea that psychological constructs are not
the same as any particular brain state
(and especially not any particular brain
region) is called “multiple realizability”
by philosophers, who mostly agree that
psychological states can’t be reduced to
brain states, as much as philosophers
agree on anything (Block and Fodor
1972 et seq.).

Proposing a particular construct is a very important part of making a
theory. For example, a researcher might worry that self-reported hap-
piness is very different than someone’s well-being as observed by the
people around them, and assert that happiness is not a single construct
but rather a group of distinct constructs. This researcher would then
be surprised to know that self-reports of happiness relate very highly
to others’ perceptions of a person’s well-being (Sandvik, Diener, and
Seidlitz 1993).1

Even external, apparently non-psychological variables like money don’t
have direct effects on people, but rather operate through psychological
constructs. People studying money seriously as a part of psychological
theories think about perceptions of money in different ways depending
on the context. For example, researchers have written about the im-
portance of how much money you have on hand based on when in the
month your paycheck arrives (Ellwood-Lowe, Foushee, and Srinivasan
2022), but have also considered perceptions of long-term accumulation
of wealth as a way of conceptualizing people’s understanding of the dif-
ferent resources available to White and Black families in the United
States (Kraus et al. 2019).
Finally, a construct can be operationalized through a manipulation: in
our money-happiness example, we operationalized “more money” in
our theory with a gift of a specific amount of cash. We hope you see
through these examples that operationalization is a huge part of the craft
of being a psychology researcher – taking a set of abstract constructs that
you’re interested in and turning them into a specific experiment with a
manipulation and a measure that tests your causal theory. We’ll have a
lot more to say about how this is done in Chapter 9.

2.1.2 The relationships between constructs
Constructs gain their meaning in part via their own definitions and op-
erationalizations, but also in part through their causal relationships to
other constructs. Figure 2.1 shows a schematic of what this kind of the-
ory might look like – as you can see, it looks a lot like the DAGs that
we introduced in the last chapter! That’s no accident. The arrows here
also describe hypothesized causal links.2

This web of constructs and assumptions is what Cronbach and Meehl
(1955) referred to as a “nomological network” – a set of proposals about
how different entities are connected to one another. The tricky part is
that the key constructs are never observed directly. They are in peo-
ple’s heads.3 So researchers only get to probe them by measuring them
through specific operationalizations.
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Figure 2.1: A schematic of what a theory
might look like.

4 The relationship between money and
happiness is actually much more com-
plicated than what we’re assuming here.
For example, Killingsworth, Kahneman,
and Mellers (2023) describes a collabora-
tion between two sets of researchers that
had different viewpoints on the connec-
tion between money and happiness.

One poetic way of thinking about this idea is that the theoretical system
of constructs “floats… above the plane of observation and is anchored to
it by the rules of measurement.” (Hempel 1952). So, even if your the-
ory posits that two constructs (say, money and happiness) are directly
related, the best you can do is manipulate one operationalization and
measure another operationalization. If this manipulation doesn’t pro-
duce any effect, it’s possible that you are wrong and money does not
cause happiness – but it is also possible that your operationalizations are
poor.
Here’s a slightly different way of thinking about a theory. A theory
provides a compression of potentially complex data into much a smaller
set of general factors. If you have a long sequence of numbers, say [2 4
8 16 32 64 128 256 …], then the expression 2𝑛 serves as a compression
of this sequence – it’s a short expression that tells you what numbers
are in vs. out of the sequence. In the same way, a theory can compress
a large set of observations (maybe data from many experiments) into
a small set of relationships between constructs. Now, if your data are
noisy, say [2.2 3.9 8.1 16.1 31.7 … ], then the theory will not be a perfect
representation of the data. But it will still be useful.
In particular, having a theory allows you to explain observed data and
predict new data. Both of these are good things for a theory to do.
For example, if it turned out that the money causes happiness theory
was true, we could use it to explain observations such as greater levels
of happiness among wealthy people. We could also make predictions
about the effects of policies like giving out a universal basic income on
overall happiness.4 Explanation is an important feature of good theories,
but it’s also easy to trick yourself by using a vague theory to explain a
finding post-hoc (after the fact). Thus, the best test of a theory is typi-
cally a new prediction, as we discuss below.
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Figure 2.2: The diagram often used
to represent Bronfenbrenner’s ecological
systems theory. Note that circles no
longer denote discrete constructs; arrows
can be interpreted as causal relationships,
but all constructs are assumed to be fully
connected.

One final note: Causal diagrams are a very useful formalism, but they
leave the generalizability of the causal relationships implicit. For ex-
ample, will more money result in more happiness for everyone, or just
for people at particular ages or in particular cultural contexts? “Who
does this theory apply to?” is an important question to ask about any
proposed causal framework.

2.1.3 Specific theories vs. general frameworks
You may be thinking, “psychology is full of theories but they don’t look
that much like the ones you’re talking about!” Very few of the theories
that bear that label in psychology describe causal relationships linking
clearly defined and operationalized constructs. You also don’t see that
many DAGs, though these are getting (slightly) more common lately
(Rohrer 2018).
Here’s an example of something that gets called a theory yet doesn’t
share the components described above. Bronfenbrenner (1992)’s Eco-
logical Systems Theory (EST) is pictured in Figure 2.2. The key thesis
of this theory is that children’s development occurs in a set of nested
contexts that each affect one another and in turn affect the child. This
theory has been immensely influential. Yet if it’s read as a causal the-
ory, it’s almost meaningless: nearly everything connects to everything
in both directions and the constructs are not operationalized – it’s very
hard to figure out what kind of predictions it makes!
EST is not really a theory in the sense that we are advocating for in this
chapter – and the same goes for many other very interesting ideas in
psychology. It’s not a set of causal relationships between constructs that
allow specific predictions about future observations. EST is instead a
broad set of ideas about what sorts of theories are more likely to explain
specific phenomena. For example, it helps remind us that a child’s be-
havior is likely to be influenced by a huge range of factors, such that any
individual theory cannot just focus on an individual factor and hope to
provide a full explanation. In this sense, EST is a framework: it guides
and inspires specific theories – in the sense we’ve discussed here, namely
a set of causal relationships between constructs – without being a theory
itself.
Frameworks like EST are often incredibly important. They can also
make a big difference to practice. For example, EST supports a model
in social work in which children’s needs are considered not only as the
expression of specific internal developmental issues but also as stemming
from a set of overlapping contextual factors (Ungar 2002). Concretely, a
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therapist might be more likely to examine family, peer, and school envi-
ronments when analyzing a child’s situation through the lens of EST.
There’s a continuum between precisely specified theories and broad
frameworks. Some theories propose interconnected constructs but
don’t specify the relationships between them, or don’t specify how
those constructs should be operationalized. So when you read a paper
that says it proposes a “theory,” it’s a good idea to to ask whether it
describes specific relations between operationalized constructs. If it
doesn’t, it may be more of a framework than a theory.

 ACCIDENT REPORT

The cost of a bad theory
Theory development isn’t just about knowledge for knowledge’s sake – it has implications for the technologies and
policies built off the theories.
One case study comes from Edward Clarke’s infamous theory regarding the deleterious effects of education for
women (Clarke 1884). Clarke posited that (1) cognitive and reproductive processes relied on the same fixed pool of
energy, (2) relative tomen, women’s reproductive processes requiredmore energy, and that (3) expending toomuch
energy on cognitive tasks like education depleted women of the energy needed to maintain a healthy reproductive
system. Based on case studies, Clarke suggested that educationwas causingwomen to become ill, experience fertility
issues, and birth weaker children He thus concluded that “boys must study and work in a boy’s way, and girls in a
girl’s way” (p. 18).
Clarke’s work is a chilling example of the implication of a poorly-developed theory. In this scenario, Clarke had
neither instruments that allowed him to measure his constructs or experiments to measure the causal connections
between them. Instead, he merely highlighted case studies that were consistent with his idea (while simultaneously
dismissing cases that were inconsistent). His ideas eventually lost favor – especially as they were subjected to more
rigorous tests. But Clarke’s arguments were used to attempt to dissuade women from pursuing higher education
and hindered educational policy reform.

2.2 How do we test theories?
Our view of psychological theories is that they describe a set of rela-
tionships between different constructs. How can we test theories and
decide which one is best? We’ll first describe falsificationism, a histori-
cal viewpoint on this issue that has been very influential in the past and
that connects to ideas about statistical inference presented in Chapter 6.
We’ll then turn to a more modern viewpoint, holism, that recognizes
the interconnections between theory and measurement.
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5 Earlier we treated the claim that
money caused happiness as a theory. It
is one! It’s just a very simple theory that
has only one hypothesized connection in
it.

6 An alternative perspective comes from
the Bayesian tradition that we’ll learn
more about in Chapters 5 and 6. In a
nutshell, Bayesians propose that our sub-
jective belief in a particular hypothesis
can be captured by a probability, and that
our scientific reasoning can then be de-
scribed by a process of normative prob-
abilistic reasoning (Strevens 2006). The
Bayesian scientist distributes probability
across a wide range of alternative hy-
potheses; observations that aremore con-
sistent with a hypothesis increase the
hypothesis’s probability (Sprenger and
Hartmann 2019).

2.2.1 Falsificationism
One historical view that resonates with many scientists is the philoso-
pher Karl Popper’s falsificationism. In particular, there is a simplistic
version of falsificationism that is often repeated by working scientists,
even though it’s much less nuanced than what Popper actually said! On
this view, a scientific theory is a set of hypotheses about the world that
instantiate claims like the connection between money and happiness.5
What makes a statement a scientific hypothesis is that it can be disproved
(i.e., it is falsifiable) by an observation that contradicts it. For example,
observing a lottery winner who immediately becomes depressed would
falsify the hypothesis that receiving money makes you happier.
For the simplistic falsificationist, theories are never confirmed. The
hypotheses that form parts of theories are universal statements. You
can never prove them right; you can only fail to find falsifying evidence.
Seeing hundreds of people get happier when they received money
would not prove that the money-happiness hypothesis was universally
true. There could always be a counter-example around the corner.
This theory doesn’t really describe how scientists work. For example,
scientists like to say that their evidence “supports” or “confirms” their
theory, and falsificationism rejects this kind of talk. A falsificationist
says that confirmation is an illusion; that the theory is simply surviving
to be tested another day. This strict falsificationist perspective is unpalat-
able to many scientists. After all, if we observe that hundreds of people
get happier when they receive money, it seems like this should at least
slightly increase our confidence that money causes happiness!6

2.2.2 A holistic viewpoint on theory testing
The key issue that leads us to reject strict falsificationism is the obser-
vation that no individual hypothesis (a part of a theory) can be falsi-
fied independently. Instead, a large series of what are called auxiliary
assumptions (or auxilliary hypotheses) are usually necessary to link an
observation to a theory (Lakatos 1976). For example, if giving some
individual person money didn’t change their happiness, we wouldn’t
immediately throw out our theory that money causes happiness. In-
stead, the fault might be in any one of our auxiliary assumptions, like
our measurement of happiness, or our choice of how much money to
give or when to give it. The idea that individual parts of a theory can’t
be falsified independently is sometimes called holism.
One consequence of holism is that the relationship between data and
theory isn’t always straightforward. An unexpected observation may
not cause us to give up on a main hypothesis in our theory – but it will
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Figure 2.3: A roulette wheel. Betting on
red is not that risky, but betting all your
chips on a particular value (*) is much
riskier.
7 Even if you’re not a falsificationist like
Popper, you can still think it’s useful to
try and falsify theories! Although a single
observation is not always enough to over-
turn a theory, it’s still a great research
strategy to look for those observations
that are most inconsistent with the the-
ory.

often cause us to question our auxiliary assumptions instead (e.g., how
we operationalize our constructs). Thus, before abandoning our theory
of money causing happiness, we might want to try several happiness
questionnaires!
The broader idea of holism is supported by historical and sociological
studies of how science progresses, especially in the work of Kuhn (1962).
Examining historical evidence, Kuhn found that scientific revolutions
didn’t seem to be caused by the falsification of a theoretical statement via
an incontrovertible observation. Instead, Kuhn described scientists as
mostly working within paradigms: sets of questions, assumptions, meth-
ods, phenomena, and explanatory hypotheses.
Paradigms allow for activities Kuhn described as normal science– that is,
testing questions within the paradigm, explaining new observations or
modifying theory to fit these paradigms. But normal science is punctu-
ated by periods of crisis when scientists begin to question their theory
and their methods. Crises don’t happen just because a single observa-
tion is inconsistent with the current theory. Rather, there will often be
a holistic transition to a new paradigm, typically because of a striking
explanatory or predictive success – often one that’s outside the scope
of the current working theory entirely.
In sum, the lesson of holism is that we can’t just put our theories in
direct contact with evidence and think that they will be supported or
overturned. Instead, we need to think about the scope of our theory (in
terms of the phenomena and measures it is meant explain), as well as
the auxiliary hypotheses – operationalizations – that link it to specific
observations.

2.3 Designing experiments to test theory
One way of looking at theories is that they let us make bets. If we bet
on a spin of the roulette wheel in Figure 2.3 that it will show us red
as opposed to black, we have almost a 50% chance of winning the bet.
Winning such a bet is not impressive. But if we call a particular number,
the bet is riskier because we have a much smaller chance of being right.
Cases where a theory has many chances to be wrong are called risky tests
(Meehl 1978).7

Much psychology consists of verbal theories. Verbal theories make
only qualitative predictions, so it is hard convincingly show them to
be wrong (Meehl 1990). In our discussion of money and happiness,
we just expected happiness to go up as money increased. We would
have accepted any increase in happiness (even if very small) as evidence
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8 Theories are often developed itera-
tively. It’s common to start with a the-
ory that is less precise and hence, that has
fewer opportunities for risky tests. But
by collecting data and testing different al-
ternatives, it’s often possible to refine the
theory so that it is more specific and al-
lows riskier tests. As we discuss below,
formalizing theories using mathematical
or computational models is one impor-
tant route to making more specific pre-
dictions and creating riskier tests.

confirming our hypothesis. Predicting that it does is a bit like betting
on red with the roulette wheel – it’s not surprising or impressive when
you win. And in psychology, verbal theories often predict that multiple
factors interact with one another. With these theories, it’s easy to say
that one or the other was “dominant” in a particular situation, meaning
you can predict almost any direction of effect.
To test theories, we should design experiments to test conditions
where our theories make “risky” predictions. A stronger version of the
money-happiness theory might suggest that happiness increases linearly
in the logarithm of income (Killingsworth, Kahneman, and Mellers
2023). This specific mathematical form for the relationship – as well
as the more specific operationalization of money as income – creates
opportunities for making much riskier bets about new experiments.
This kind of case is more akin to betting on a specific number on the
roulette wheel: when you win this bet, it is quite surprising!8

Testing theoretical predictions also requires precise experimental mea-
surements. As we start to measure the precision of our experimental
estimates in Chapter 6, we’ll see that the more precise our estimate is,
the more values are inconsistent with it. In this sense, a risky test of a
theory requires both a very specific prediction and a precise measure-
ment. (Imagine spinning the roulette wheel but seeing such a blurry
image of the result that you can’t really tell where the ball is. Not very
useful.)
Even when theories make precise predictions, they can still be too flex-
ible to be tested. When a theory has many free parameters – numerical
values that can be fit to a particular dataset, changing the theories pre-
dictions on a case-by-case basis – then it can often predict a wide range
of possible results. This kind of flexibility reduces the value of any par-
ticular experimental test, because the theorist can always say after the
fact that the parameters were wrong but not the theory itself (Roberts
and Pashler 2000).
One important way to remove this kind of flexibility is to make pre-
dictions in advance, holding all parameters constant. A preregistration
is a great way to do this – the experimenter derives predictions and
specifies in advance how they will be compared to the results of the ex-
periment. We’ll talk much more about the process of preregistration in
Chapter 11.
We’ve been focusing mostly on testing a single theory. But the best state
of affairs is if a theory can make a very specific prediction that other
theories don’t make. If competing theories both predict that money
increases happiness to the same extent, then data consistent with that
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9 We can use this idea, which comes
from Bayesian statistics, to try to fig-
ure out what the right experiment is by
considering which specific experimental
conditions derive differences between
theories. In fact, the idea of choos-
ing experiments based on the predictions
that different theories make has a long
history in statistics (Lindley 1956); it’s
now called optimal experiment design
(Myung, Cavagnaro, and Pitt 2013). The
idea is, if you have two or more theories
spelled out mathematically or computa-
tionally, you can simulate their predic-
tions across a lot of conditions and pick
the most informative conditions to run
as an actual experiment.

predicted relationship don’t differentiate between the theories, no mat-
ter how specific the prediction might be. The experiment that teaches
us the most is going to be the one where a very specific pattern of data
is predicted according to one theory and another.9

Given all of this discussion, as a researcher trying to come up with a
specific research idea, what do you do? Our advice is: follow the theories.
That is, for the general topic you’re interested in – whether it’s money
and happiness, bilingualism, the nature of concepts, or depression – try
to get a good sense of the existing theories. Not all theories will make
specific, testable predictions, but hopefully some will! Then ask, what
are the “risky bets” that these theories make? Do different theories
make different bets about the same effect? If so, that’s the effect you
want to measure!

2.4 Formalizing theories
Say we have a set of constructs we want to theorize about. How do we
describe our ideas about the relationships between them so that we can
make precise predictions that can be compared with other theories? As
one writer noted, mathematics is “unreasonably effective” as a vocab-
ulary for the sciences (Wigner 1990). Indeed, there have been calls for
greater formalization of theory in psychology for at least the last 50 years
(Harris 1976).

 DEPTH

A universal law of generalization?
How do you take what you know and apply it to a new situation? One answer is that you use the same answer that
has worked in similar situations. To do this kind of extrapolation, however, you need a notion of similarity. Early
learning theorists tried tomeasure similarity by creating an association between a stimulus – say a projected circle of
light of a particular size – and a reward by repeatedly presenting them together. After this association was learned,
they would test generalization by showing circles of different sizes and measuring the strength of the expectation
for a reward. These experiments yielded generalization curves: the more similar the stimulus, the more people and
other animals would give the same response, signaling generalization.
Shepard (1987) was interested in unifying the results of these different experiments. The first step in this process
was establishing a stimulus space. He used a procedure called “multidimensional scaling” to infer how close stimuli
were to each other on the basis of how strong the generalization between them was. When he plotted the strength
of the generalization by the distance between stimuli within this space (their similarity), he found an incredibly
consistent pattern: generalization decreased exponentially as similarity decreased.
He argued that this described a “universal law” that governed the relationship between similarity and generalization
for almost any stimulus, whether it was the size of circles, the color of patches of light, or the similarity between
speech sounds. Later work has even extended this same framework to highly abstract dimensions such as the
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10 This book won’t go into more details
about routes to building computational
theories, but if you are interested, we
encourage you to explore these frame-
works as a way to deepen your theoreti-
cal contributions and to sharpen your ex-
perimental choices.

relationships between numbers of different types [e.g., being even, being powers of 2, etc.; Tenenbaum (2000)].

Figure 2.4: The causal theory of similarity and generalization posited by Shepard (1987).

The pattern shown in Shepard’s work is an example of inductive theory building. In the vocabulary we’re devel-
oping, Shepard ran (or obtained the data from) randomized experiments in which the manipulation was stimulus
dimension (e.g., circle size) and the measure was generalization strength. Then the theory that Shepard proposed
was that manipulations of stimulus dimension acted to change the perceived similarity between the stimuli. His
theory thus linked two constructs: stimulus similarity and generalization strength (Figure 2.4). Critically the causal
relationship he described was not just a qualitative relationship but instead a specific mathematical form.
Shepard wrote in the conclusion of his 1987 paper, “Possibly, behind the diverse behaviors of humans and animals,
as behind the variousmotions of planets and stars, wemay discern the operation of universal laws.” While Shepard’s
dream is an ambitious one, it defines an ideal for psychological theorizing.

There is no one approach that will be right for theorizing across all ar-
eas of psychology (Oberauer and Lewandowsky 2019; Smaldino 2020).
Mathematical theories [such as Shepard (1987); see Depth box] have
long been one tool that allows for precise statements of particular rela-
tionships.
Computational or formal artifacts are not themselves psychological the-
ories, but they can be used to create psychological theories via the map-
ping of constructs onto entities in themodel and the use of the principles
of the formalism to instantiate psychological hypotheses or assumptions
(Guest and Martin 2021).10 Yet stating such clear and general laws feels
out of reach in many cases. If we had more Shepard-style theorists or
theories, perhaps we’d be in a better place. Or perhaps such “universal
laws” are simply out of reach for most of human behavior.
An alternative approach creates statistical models of data that incorpo-
rate substantive assumptions about the structure of the data. We use
such models all the time for data analysis. The trouble is, we often
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11 Linear models are ubiquitous in the
social sciences because they are conve-
nient to fit, but as theoretical models
they are deeply impoverished. There is
a lot you can do with a linear regression,
but in the end, most interesting processes
are not linear combinations of factors!

Figure 2.5: A gradient of specificity
in theoretical tools. Figure inspired by
Guest and Martin (2021).

don’t interpret them as having substantive assumptions about the struc-
ture of the data, even when they do (Fried 2020)! But if we examine
these assumptions explicitly, even the simplest statistical models can be
productive tools for building theories.
For example, if we set up a simple linear regression model to estimate
the relationship between money and happiness, we’d be positing a lin-
ear relationship between the two variables – that an increase in one
would always lead to a proportional increase in the other.11 If we fit the
model to a particular dataset, we could then look at the weights of the
model. Our theory might then then be something like “giving people
$100 causes 0.2 points of increase in happiness on a self-report scale.”
Obviously, this regressionmodel is not a very good theory of the broader
relationship between money and happiness, since it posits that every-
one’s happiness would be at the maximum on the 10 point scale if you
gave them (at most) $4500. It also doesn’t tell us how this theory would
generalize to other people, other measures of happiness, or other as-
pects of the psychological representation of money such as income or
wealth.
From our viewpoint, these sorts of questions are not distractions – they
are the critical work of moving from experiment to theory (Smaldino
2020)! In Chapter 7, we try to draw out this idea further, reconstruing
common statistical tests as models that can be repurposed to express con-
tentful scientific hypotheses while recognizing the limitations of their
assumptions.
One of the strengths of modern cognitive science is that it provides a
very rich set of tools for expressing more complex statistical models
and linking them to data. For example, the modern Bayesian cogni-
tive modeling tradition grew out of work like Shepard’s; in these mod-
els, a system of equations defines a probability distribution that can be
used to estimate parameters, predict new data, or make other inferences
(Goodman, Tenenbaum, and Contributors 2016). And neural network
models – which are now fueling innovations in artificial intelligence –
have a long history of being used as substantive models of human psy-
chology (Elman, Bates, and Johnson 1996). One way to think about
all these alternatives is as being on a gradient from the general, inspira-
tional frameworks we described above all the way down through com-
putational models and then to statistical models that can be fit to specific
datasets (Figure 2.5).
In our discussion, we’ve presented theories as static entities that are
presented, tested, confirmed, and falsified. That’s a simplification that
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12 In the thinking of the philosopher
Imre Lakatos, a “productive” research
program is one where the core princi-
ples are gradually supplemented with a
limited set of additional assumptions to
explain a growing base of observations.
In contrast, a “degenerate” research pro-
gram is one in which you are constantly
making ad-hoc tweaks to the theory
to explain each new datapoint (Lakatos
1976).

doesn’t take into account the ways that theories – especially when in-
stantiated as formal models – can be flexibly adjusted to accommodate
new data (Navarro 2019). Most modern computational theories are
more like a combination of core principles, auxiliary assumptions, and
supporting empirical assumptions. The best theories are always being
enlarged and refined in response to new data.12

2.5 Chapter summary: Theories
In this chapter, we characterized psychological theories as a set of causal
relationships between latent constructs. The role of experiments is to
measure these causal relationships and to adjudicate between theories
by identifying cases where different theories make different predictions
about particular relationships.

DISCUSSION QUESTIONS

1. Identify an influential theory in your field or sub-field. Can you draw the “nomological network” for it? What
are the key constructs and how are they measured? Are the links between constructs just directional links or is
there additional information about what type of relationship exists? Or does our description of a theory in this
chapter not fit your example?

2. Can you think of an experiment that falsified a theory in your area of psychology? To what extent is falsification
possible for the kinds of theories that you are interested in studying?

READINGS

– A fabulous introduction to issues in the philosophy of science can be found in: Godfrey-Smith, P. (2009). Theory
and reality. University of Chicago Press.

– Bayesian modeling has been very influential in cognitive science and neuroscience. A good introduction in
cognitive science comes from: Lee, M. D. & Wagenmakers, E. J. (2013). Bayesian Cognitive Modeling: A Practical
Course. Cambridge University Press. Much of the book is available free online at https://faculty.sites.uci.edu/
mdlee/bgm/.

– A recent introduction to Bayesian modeling with a neuroscience focus: Ma, W. J., Kording, K. P., & Goldreich,
D. (2022). Bayesian models of perception and action: An introduction. MIT Press. Free online at https://www.cns.
nyu.edu/malab/bayesianbook.html.

https://faculty.sites.uci.edu/mdlee/bgm/
https://faculty.sites.uci.edu/mdlee/bgm/
https://www.cns.nyu.edu/malab/bayesianbook.html
https://www.cns.nyu.edu/malab/bayesianbook.html
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Figure 3.1: A framework for under-
standing different terms related to the re-
peatabilty of scientific findings (based on
Whitaker 2017).

3 REPLICATION

🍏 LEARNING GOALS

– Define and distinguish reproducibility and replicability
– Synthesize the meta-scientific literature on replication and the causes of replication failures
– Reason about the relation of replication to theory building

In the previous chapters, we introduced experiments, their connection
with causal inference, and their role in building psychological theory. In
principle, repeated experimental work combined with theory building
should yield strong research programs that explain and predict phenom-
ena with increasing scope.
Yet in recent years there has been an increasing recognition that this ide-
alized view of science might not be a good description of what we actu-
ally seewhenwe look at the psychology literature. Many classic findings
may be wrong, or at least overstated. Their statistical tests might not be
trustworthy. The actual numbers are even wrong in many papers! And
even when experimental findings are “real,” they may not generalise
broadly to different people and different situations.
How do we know about these problems? A burgeoning field called
metascience is providing the evidence. metascience is research about re-
search, for example investigating how often findings in a literature can be
successfully built on, or trying to figure out how widespread some neg-
ative practice is. metascience allows us to go beyond one-off anecdotes
about a particular set of flawed results or rumors about bad practices.
Perhaps the most obvious sign that something is wrong is that when in-
dependent scientists team up in metascience projects and try to repeat
previous studies, they often do not get the same results.
Before we begin reviewing this evidence, let’s discuss the different ways
in which a scientific finding can be repeated. Figure 3.1 gives us a basic
starting point for our definitions. For a particular finding in a paper, if
we take the same data, do the same analysis, and get the same result, we
call that finding reproducible (sometimes, analytically or computation-
ally reproducible). If we collect new data using the same methods, do
the same analysis, and get the same result, we call that a replication and
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1 You might have observed that a lot
of work is being done here by the word
“same.” How do we operationalize
same-ness for experimental procedures,
statistical analyses, samples, or results?
These are difficult questions that we’ll
touch on below. Keep in mind that
there’s no single answer and so these
terms are always going to helpful guides
rather than exact labels.

2 The situation is nicely summed up
by a prescient quote from Buckheit and
Donoho (1995): “… a scientific pub-
lication is not the scholarship itself, it
is merely advertising of the scholarship.
The actual scholarship is the complete
software development environment and
the complete set of instructions which
generated the figures.”
3 For many years, professional societies,
like the American Psychological Associ-
ation, have mandated data sharing (https:
//www.apa.org/ethics/code), but only
for purposes of verification, and only
“on request” – in other words, scientists
could keep data hidden by default and
it was their responsibility to share if an-
other scientist requested access. In prac-
tice, this kind of policy does not work;
data are rarely made available on request
(Wicherts et al. 2006). We believe this
situation is untenable. We provide a
longer argument justifying data sharing
in Chapter 4 and discuss some of the
practicalities of sharing in Chapter 13.

say that the finding is replicable. If we do a different analysis with the
same data, we call this a robustness check and if we get a similar result,
we say that the finding is robust.1 We leave the last quadrant empty be-
cause there’s no specific term for it in the literature – the eventual goal
is to draw generalizable conclusions but this term means more than just
having a finding that is reproducible and replicable.
In this chapter, we’ll primarily discuss reproducibility and replicability
(we’ll talk about robustness a bit in Chapter 11). We’ll start out by re-
viewing key concepts around reproducibility and replicability as well
as some important metascience findings. This literature suggests that
when you read an average psychology paper, your default expectation
should be that it might not replicate!
We’ll then discuss some of themain reasonswhy findingsmight not repli-
cate – especially analytic flexibility and publication bias. We end by tak-
ing up the issue of how reproducibility and replicability relate to theory
building in psychology, and the role of open science in this discussion.
This discussion focuses on the key role of TRANSPARENCY (one of our
major book themes) in supporting theory building.

3.1 Reproducibility
Scientific papers are full of numbers: sample sizes, measurements, statis-
tical results, and visualizations. For those numbers to havemeaning, and
for other scientists to be able to verify them, we need to know where
they came from (their provenance). The chain of actions that scientists
perform on the raw data, all the way through to reporting numbers in
their papers, is sometimes called the analysis pipeline. For much of his-
tory, scientific papers have only provided a verbal, description of the
analysis pipeline, usually with little detail.2

Moreover, researchers typically do not share key research objects from
this pipeline, such as the analysis scripts or the raw data (Hardwicke,
Thibault, et al. 2021).3 Without code and data, the numbers reported
in scientific papers are often not reproducible – an independent scientist
cannot repeat all of the steps in the analysis pipeline and get the same
results as the original scientists.
Reproducibility is desirable for a number of reasons. Without it:

– Errors in calculation or reporting could lead to disparities
between the reported result and the actual result,

– Vague verbal descriptions of analytic computations could keep
readers from understanding the computations that were actually
performed,

https://www.apa.org/ethics/code
https://www.apa.org/ethics/code
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4 There is a very interesting discussion
of the pernicious role of scientific er-
ror on theory building in Gould (1996)’s
“The Mismeasure of Man.” Gould ex-
amines research on racial differences in
intelligence and documents how scien-
tific errors that supported racial differ-
ences were often overlooked. Errors
are often caught asymmetrically; we are
moremotivated to double-check a result
that contradicts our biases.

5 Confirming Gould’s speculation (see
note above), most of the reporting errors
that led to decision errors were in line
with the researchers’ own hypotheses.
6 Statcheck is now available as a web
app (http://statcheck.io) and an R pack-
age so that you can check your own
manuscripts!

– The robustness of data analyses to alternative model specifications
cannot be checked, and

– Synthesizing evidence across studies, a key part of building a cu-
mulative body of scientific knowledge, is much more difficult.

From this list, error detection and correction is probably the most press-
ing issue. But are errors common? There are plenty of individual in-
stances of errors that are corrected in the published literature (e.g., some
of us found an error in Cesana-Arlotti et al. 2018), and we ourselves
have made significant analytic errors (e.g., Frank et al. 2013). But
these kinds of experiences don’t tell us about the frequency of errors
more generally (or the consequences of error for the conclusions that
researchers draw).4

Estimating the frequency of errors is a meta-scientific issue that
researchers have attempted to answer over the years. If errors are
frequent, that would suggest a need for changes in our policies and
practices to reduce their frequency! Unfortunately, the lack of data
availability creates a problem: it’s hard to figure out if calculations are
wrong if you can’t check them in the first place. Here’s one clever
approach to this issue. In standard American Psychological Association
(APA) reporting format, inferential statistics must be reported with
three pieces of information: the test statistic, the degrees of freedom
for the test, and the 𝑝-value (e.g., 𝑡(18) = −0.74, 𝑝 = 0.47). Yet
these pieces of information are redundant with one another. Thus,
reported statistics can be checked for consistency simply by evaluating
whether they line up with one another – that is, whether the 𝑝-value
recomputed from the 𝑡 and degrees of freedom matches the reported
value.
Bakker and Wicherts (2011) performed this kind of statistical consis-
tency analysis on a sample of 281 papers, and found that around 18%
of statistical results were incorrectly reported. Even more worrisome,
around 15% of articles contained at least one decision error – that is,
a case where the error changed the direction of the inference that was
made (e.g., from significant to insignificant).5 Nuijten et al. (2016) used
an automated method called “statcheck”6 to confirm and extend this
analysis. They checked 𝑝-values for more than 250,000 psychology pa-
pers in the period 1985–2013 and found that around half of all papers
contained at least one incorrect 𝑝-value!
These findings provide a lower bound on the number of errors in the
literature and suggest that reproducibility of analyses is likely very im-
portant. However, they only address the consistency of statistical re-
porting. What would happen if we tried to repeat the entire analysis
pipeline from start to finish? It’s rather difficult to answer this question

http://statcheck.io
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at a large scale: firstly, it takes a long time to run a reproducibility check;
and secondly, the lack of access to raw data means that for most scientific
papers, checking reproducibility is impossible.
Nevertheless, a few years ago a group of us spotted an opportunity
to check reproducibility by examining studies published in two jour-
nals that either required or encouraged data sharing. Hardwicke et al.
(2018) and Hardwicke, Bohn, et al. (2021) first identified studies that
shared data, then narrowed those down to studies that shared reusable
data (the data were accessible, complete, and comprehensible). For 60
of these articles, we then attempted to reproduce numerical values re-
lated to a particular statistical result in the paper. The process was in-
credibly labor-intensive, with articles typically requiring 5–10 hours
of work each. And the results were concerning: the targeted values in
only about a third of articles were completely reproducible without help
from the original authors! In many cases, after – sometimes extensive
– correspondence with the original authors, they provided additional
information that was not reported in the original paper. After author
contact, the reproducibility success rate improved to 62% (Figure 3.2).
The remaining papers appeared to have some values that neither we, nor
the original authors, could reproduce. Importantly, we didn’t identify
any patterns of non-reproducibility that seriously undermined the con-
clusions drawn in the original articles; however, other reproducibility
studies have found a distressingly high number of decision errors (Artner
et al. 2020), albeit with a slightly higher success rate overall.

Figure 3.2: Analytic reproducibility of
results from open-data articles in Cogni-
tion and Psychological Science. From Hard-
wicke, Bohn, et al. (2021), Figure 1 (li-
censed under CC BY 4.0).

In sum: transparency is a critical imperative for decreasing the fre-
quency of errors in the published literature. Reporting and computation
errors are frequent in the published literature, and the identification of
these errors depends on the findings being reproducible. If data are not
available, then errors usually cannot be found.
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CASE STUDY

The Open Science Collaboration
Around 2011, we were teaching our Experimental Methods course for the first time, based on a course model that
we had worked on with Rebecca Saxe (Frank and Saxe 2012). The idea was to introduce students to the nuts and
bolts of research by having them run replications. A guy named Brian Nosek was on sabbatical nearby, and over
coffee we learned that he was starting up an ambitious project to replicate a large sample of studies published in
top psychology journals in 2008.
In the course that year we chose replication projects from the sample that Nosek had told us about. Four of these
projects were executed very well and were nominated by the course TAs for inclusion in the broader project. A
few years later, when the final group of 100 replication studies was completed, we got a look at the results, shown
in Figure 3.3.

Figure 3.3: Results from the Open Science Collaboration (2015). Each point represents one of the studies in the sample, with the
horizontal position giving the original effect size and the vertical position giving the replication effect size. Dot size represents
estimated statistical power. The grey line represents a perfect replication.

The resulting metascience paper, which we and others refer to as the “replication project in psychology” (RPP),
made a substantial impression on both psychologists and the broader research community, defining both a field of
psychology metascience studies and providing a template for many-author collaborative projects (Open Science
Collaboration 2015). But the most striking thing was the result: disappointingly, only around a third of the repli-
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cations had similar findings to the original studies. The others yielded smaller effects that were not statistically
significant in the replication sample (almost all of the original studies were significant). RPP provided the first
large-scale evidence that there were systematic issues with replicability in the psychology literature.
RPP’s results – and their interpretation – were controversial, however, and much ink was spilled on what these
data showed. In particular, critics pointed to different degrees of fidelity between the original studies and the
replications; insufficient levels of statistical power and low evidential value in the replications; non-representative
sampling of the literature; and difficulties identifying specific statistical outcomes for replication success (Gilbert
et al. 2016; Anderson et al. 2016; Etz and Vandekerckhove 2016). In our view, many of these critiques have
merit, and you can’t simply interpret the results of RPP as an unbiased estimate of the replicability of results in the
literature, contra the title.
And yet, RPP’s results are still important and compelling, and they undeniably changed the direction of the field of
psychology. Many good studies are like this – they have flaws but they inspire follow up studies that can address
those problems. For several of us personally, working on this project was also transformative in that it showed us
the power of collaborative work. Together we could do a study that no one of us had any hope of completing on
our own, and potentially make a difference in our field.

3.2 Replication
Beyond verifying a paper’s original analysis pipeline, we are often in-
terested in understanding whether the study can be replicated – if we
repeat the study methods and obtain new data, do we get similar re-
sults? To quote from Popper (2005), “the scientifically significant… ef-
fect may be defined as that which can be regularly [replicated] by anyone
who carries out the appropriate experiment in the way prescribed.”
Replications can be conducted for many reasons (Schmidt 2009). One
goal can be to verify that the results of an existing study can be obtained
again if the study is conducted again in exactly the same way, to the
best of our abilities. A second goal can be to gain a more precise esti-
mate of the effect of interest by conducting a larger replication study, or
combining the results of a replication study with the existing study. A
third goal can be to investigate whether an effect will persist when, for
example, the experimental manipulation is done in a different, but still
theory-consistent, manner. Alternatively, we might want to investigate
whether the effect persists in a different population. Such replications
are often efforts to “replicate and extend,” and are common both when
the same research team wants to conduct a sequence of experiments
that each build on one another or when a new team wants to build on
a result from a paper they have read (Rosenthal 1990).
Much of the metascience literature (and attendant debate and discus-
sion) has focused on the first goal – simple verification. This focus has
been so intense that the term “replication” has become associated with
skepticism or even attacks on the foundations of the field. This dynamic
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7 A fascinating study by Baribault et
al. (2018) proposes a method for em-
pirically understanding psychological in-
variances. Treating a subliminal priming
effect as their model system, they sam-
pled thousands of “micro-experiments”
inwhich small parameters of their exper-
imental procedure were randomly sam-
pled. These parameters allowed for mea-
surement of their effect of interest, aver-
aging across this irrelevant variation. In
their case, it turned out that color did not
matter.
8 In some sense, the research program
of some branches of the social sciences
amounts to an understanding of invari-
ances across human cognition.
9 Presumably not very much if Dr. Toad
gave the original instructions in English
instead of in German – that’s another
one of these pesky invariances that we
are always worrying about!
10 These also get called exact replica-
tions sometimes. We think this term is
misleading because similarity between
two different experiments is always go-
ing to be on a gradient, and where you
cut this continuum is always going to be
a theory-laden decision. One person’s
“exact” is another’s “inexact.”

is at odds with the role that replication is given in a lot of philosophy of
science, where it is assumed to be a typical part of “normal science.”

3.2.1 Conceptual frameworks for replication
The key challenge of replication is invariance– Popper’s stipulation that
a replication be conducted “in the way prescribed” in the quote above.
That is, what are the features of the world over which a particular obser-
vation should be relatively constant, andwhat are those that are specified
as the key ingredients for the effect? Replication is relatively straightfor-
ward in the physical and biological sciences, in part because of presup-
posed theoretical background that allows us to make strong inferences
about invariance. If a biologist reports an observation about a particular
cell type from an organism, the color of the microscope is presumed not
to matter to the observation.
These invariances are far harder to state in psychology, for both the pro-
cedure of an experiment and its sample. Procedurally, should the color
of the experimental stimulus matter to the measured effect? In some
cases yes, in some cases no.7 Yet the task of postulating how a scientific
effect should be invariant to lab procedures pales in comparison to the
task of postulating how the effect should be invariant across different
human populations!8

A lot is at stake in this discussion. If Dr. Frog publishes a finding with
US undergraduates and Dr. Toad then “replicates” the procedure in
Germany, to what extent should we be perturbed if the effect is differ-
ent in magnitude or absent?9 Meta-researchers have made a number of
replication taxonomies to try and quantify the degree of methodologi-
cal consistency between two experiments.
Some researchers have tried to distinguish “direct replications”10 and
“conceptual replications”. Direct replications are those that attempt to
reproduce all of the salient features of the prior study, up towhatever in-
variances the experimenters believe are present (e.g., color of the paint,
gender of the experimenter, etc.). In contrast, conceptual replications
are typically paradigms that attempt to test the same hypothesis via dif-
ferent operationalizations of the manipulation and/or the measure. We
agree with Zwaan et al. (2018): labeling this second type of experiment
as a “replication” is a little misleading. Rather, so-called “conceptual
replications” are actually different tests of the same part of your theory.
Such tests can be extremely valuable, but they serve a different goal than
replication.
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 ACCIDENT REPORT

“Small Telescopes”
We’ve been discussing the question of invariance with respect to procedure and sample, but we haven’t really dis-
cussed invariance with respect to the studies’ statistical results. Towhat extent canwe consider two statistical results
to be “the same”? Several obvious metrics, including those used by RPP, have important limitations (Simonsohn
2015). For example, if one finding is statistically significant and the other isn’t, they still could have effect sizes that
are actually quite close to one another, in part because one might have a larger sample size than the other. Or you
could have two significant findings that nevertheless have very different effect sizes.

Figure 3.4: The original finding by Schwarz and Clore (1983) and two replications with much larger samples. All three estimates
include a 95% confidence interval, but the confidence intervals are very small for the two replication studies. The blue dotted
line shows the smallest effect that the origial study could reasonably have detected. Based on Simonsohn (2015).

In a classic study, Schwarz and Clore (1983) reported that participants (N=28) rated their life satisfaction as higher
on sunny days than rainy days, suggesting that theymis-attributed temporary happiness about the weather to longer-
term life satisfaction. However, when two more recent studies examined very large samples of survey responses,
they yielded estimates of the effect that were much smaller. (All of these effects have been standardized so they
are on the same scale using a metric called Cohen’s 𝑑 that we will introduce more formally in Chapter 5). In one
survey, the effect was statistically significant but extremely small; in the other it was essentially zero (Figure 3.4).
Using statistical significance as the metric of replication success, you might be tempted to say that the first of these
studies was a successful replication and the second was a failed replication.
Simonsohn points out that this interpretation doesn’t make sense, using the analogy of a study’s sample size as a
telescope. Following this analogy, Schwarz and Clore had a very small telescope (i.e., a small sample size), and they
pointed it in a particular direction and claimed to have observed a planet (i.e., a nonzero effect). Now it might
turn out that there was a planet at that location when you look with a much larger telescope (first replication),
and it might turn out that there wasn’t (second replication). Regardless, however, the original small telescope was
simply not powerful enough to have seen whatever was there. Both studies fail to replicate the original observation,
regardless of whether their observed effect was in the same direction.
Following Simonsohn’s example, numerous metrics for replication success have been proposed (Mathur and Van-
derWeele 2020). The best of these move away from the idea that there is a binary test of whether an individual
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replication was successful and towards a comparison of the two effects and whether they appear consistent with
the same theory. Gelman (2018) suggests the “time reversal” heuristic – rather than thinking of a replication as a
success or a failure, consider the alternative world in which the replication study had been performed first and the
original study followed it.
If we leave behind the idea that the original study has precedence, it makes much more sense to consider the sum
total of the evidence across multiple experiments. Using this approach, it seems pretty clear that the weather mis-
attribution effect is, at best, a tiny factor in people’s overall judgments of their life satisfaction, even if a small study
once found a larger effect.

3.2.1 The metascience of replication
In RPP, replication teams reported subjectively that 39% of replications
were successful, with 36% reporting a significant effect in the same di-
rection as the original. How generalizable is this estimate – and how
replicable is psychological research more broadly? Based on the discus-
sion above, we hope we’ve made you skeptical that this is a well-posed
question, at least without additional qualifiers. Any answer is going to
have to provide details about the scope of this claim, the definition of
replication being used, and the metric for replication success. On the
other hand, versions of this question have led to a number of empirical
studies that help us better understand the scope of replication issues.
Many subsequent empirical studies of replication have focused on par-
ticular subfields or journals, with the goal of informing particular field-
specific practices or questions. For example, Camerer et al. (2016) repli-
cated all of the between-subject laboratory articles published in two top
economics journals in the period 2011–2014. They found a replication
rate of 61% of significant effects in the same direction of the original,
higher than the rate in RPP but lower than the naive expectation based
on their level of statistical power. Another study attempted to replicate
all 21 behavioral experiments published in the journals Science and Na-
ture from 2010–2015, finding a replication rate of 62% significant effects
(Camerer et al. 2018). This study was notable because they followed
a two-step procedure – after an initial round of replications, they fol-
lowed up on the failures by consulting with the original authors and
pursuing extremely large sample sizes. The resulting estimate thus is
less subject to many of the critiques of the original RPP paper. While
these types of studies do not answer all the questions that were raised
about RPP, they suggest that replication rates for top experiments are
not as high as we’d like them to be, even when care is taken with the
sampling and individual study protocols.
Other scientists working in the same field can often predict when an ex-
periment will fail to replicate. Dreber et al. (2015) showed that predic-
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tion markets (where participants bet small sums of real money on repli-
cation outcomes) made fairly accurate estimates of replication success
in the aggregate. This result has itself now been replicated several times
(e.g., in the Camerer et al., 2018 study described earlier). Maybe even
more surprisingly, there’s some evidence that machine learning mod-
els trained on the text of papers can predict replication success (Yang,
Youyou, and Uzzi 2020; Youyou, Yang, and Uzzi 2023), though more
work still needs to be done to validate these models and understand the
features they use. More generally, these two lines of research suggest
the possibility of isolating consistent factors that lead to replication suc-
cess or failure. (In the next section we consider what these factors are
in more depth.)
Althoughmore work still needs to be done to get generalizable estimates
of replicability, taken together, the metascience literature does provide
some clarity on what we should expect. Altogether, the chance of a
significant finding in a (well-powered) replication study of a generic ex-
periment in social and cognitive psychology is likely somewhere around
56%. Furthermore, the replication effect will likely be on average 53%
as large (Nosek et al. 2021).
On the other hand, these large-scale replication studies have substantial
limitations as well. With relatively few exceptions, the studies chosen
for replication used short, computerized tasks that mostly would fall
into the categories of social and cognitive psychology. Further, and per-
haps most troubling from the perspective of theory development, they
tell us only whether a particular experimental effect can be replicated.
They tell us much less about whether the construct that the effect was
meant to operationalize is in fact real! We’ll return to the difficult issue
of how replication and theory construction relate to one another in the
final section of this chapter.
Some have called the narrative that emerges from the sum of thesemeta-
science studies the “replication crisis.” We think of it as a major temper-
ing of expectations with respect to the published literature. Your naive
expectationmight reasonably be that you could read a typical journal ar-
ticle, select an experiment from it, and replicate that experiment in your
own research. The upshot of this literature is, unfortunately, if you try
selecting and replicating an exeriment, you might well be disappointed
by the result.
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 ACCIDENT REPORT

Consequences for the study, consequences for the person
“Power posing” is the idea that adopting a more open and expansive physical posture might also change your con-
fidence. Carney, Cuddy, and Yap (2010) told 42 participants that they were taking part in a study of physiological
recording. They then held two poses, each for a minute. In one condition, the poses were expansive (e.g., legs
out, hands on head); in another condition, the poses were contractive (e.g., arms and legs crossed). Participants in
the expansive pose condition showed increases in testosterone and decreases in salivary cortisol (a stress marker),
they took a greater number of risk in a gambling task, and they reported that they were more “in charge” in a sur-
vey. This result suggested that a two-minute manipulation could lead to striking physiological and psychological
changes – in turn leading to power posing becoming firmly enshrined as part of the set of recommended strategies
in business and elsewhere. The original publication contributed to the rise of the researchers’ careers, including
becoming a principal piece of evidence in a hugely-popular TED talk by Amy Cuddy, one of the authors.
Followup work has questioned these findings, however. A replication study with a larger number of participants
(N=200) failed to find evidence for physiological effects of power-posing, even as it did find some effects on par-
ticipants’ own beliefs (Ranehill et al. 2015). And a review of the published literature suggested that many findings
appeared to be the result of some sort of publication bias, as far too many of them had p-values very close to the
.05 threshold (Simmons and Simonsohn 2017). In light of this evidence, the first author of the replication study
bravely made a public statement that she does not believe that “power pose” effects are real (Carney 2016).
From the scientific perspective, it’s very tempting to take this example as a case in which the scientific ecosystem
corrects itself. Although many people continue to cite the original power posing work, we suspect the issues are
well-known throughout the social psychology community, and overall interest from the lay public has gone down.
But this narrativemasks the very real human impacts of the self-correction process, which can raise ethical questions
about the best way to address issues in the scientific record.
The process of debate and discussion around individual findings can be bruising and complicated. In the case of
power posing, Cuddy herself was tightly associated with the findings and many critiques of the findings became
critiques of the individual. Several commentators used Cuddy’s name as a stand-in for low-quality psychological
results, likely because of her prominence and perhaps because of her gender and age as well. These comments were
harmful to Cuddy personally and her career more generally.
Scientists should critique, reproduce, and replicate results – these are all parts of the progress of normal science. But
it’s important to do this in a way that’s sensitive to the people involved. Here are a few guidelines for courteous
and ethical conduct:

– Always communicate about the work, never the person. Try to use language that is specific to the analysis or
design being critiqued, rather than the person who did the analysis or thought up the design.

– Avoid using language that assumes negative intentions, e.g. “the authors misleadingly state that …”
– Ask someone to read your paper, email, blogpost, or tweet before you hit send. It can be very difficult to predict

how someone else will experience the tone of your writing; a reader can help you make this judgement.
– Consider communicating personally before communicating publicly. As Joe Simmons, one critic in the power-

posing debate said, “I wish I’d had the presence of mind to pick up the phone and call [before publishing
my critique]” (Dominus 2017). Personal communication isn’t always necessary (and can be difficult due to
asymmetries of power or status), but it can be helpful.

As we will argue in the next chapter, we have an ethical duty as scientists to promote good science and critique low
quality science. But we also have a duty to our colleagues and communities to be good to one another.
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3.3 Causes of replication failure

 DEPTH

Context, moderators, and expertise
There are many explanations for failed replications. The wonderful thing about metascience is that these explana-
tions can be tested empirically!
Let’s start with the idea that specific experimental operationalizations of a theory might be “context sensitive,” es-
pecially in subfields, like social psychology, whose theories inherently refer to environmental context (Van Bavel et
al. 2016). Critics brought this issue up for RPP, where there were several studies in which the original experimen-
tal materials were tailored to one cultural context but then were deployed in another context, potentially leading
to failure due to mismatch (Gilbert et al. 2016).
Context sensitivity seems like a great explanation because in some sense, it must be right. If the context of an
experiment includes the vast network of learned associations, practices, and beliefs that we all hold, then there’s
no question that an experiment’s materials tap into this context to one degree or another. For example, if your
experiment relies on the association between doctor and nurse concepts, you would expect this experiment to work
differently in the past when nurse meant something more like nanny (Ramscar 2016).
On the other hand, as an explanation of specific replication failures, context sensitivity has not fared very well.
The “Many Labs” projects were a series of replication projects in which multiple labs independently attempted to
replicate several original studies. (In contrast, in RPP and similar studies, a single replication was conducted for
each original study.) Some of the Many Labs projects assessed variation in replication success across different labs.
In ManyLabs 2, Klein et al. (2018) replicated 28 findings, distributed across 125 different samples and more than
15,000 participants. ManyLabs 2 found almost no support for the context sensitivity hypothesis as an explanation
of replication failure. In general, when effects failed to replicate, they did so when conducted in person as well as
when conducted online, and these failures were consistent across many cultures and labs.
On the other hand, a review of several Many Labs-style replication projects indicated, on re-analysis, that popu-
lation effects differed across replication labs even when the replication protocols were very similar to one another
(Olsson-Collentine, Wicherts, and Assen 2020; Errington et al. 2021). So context sensitivity is almost certainly
present – and we’ll return to the broader issues of generalizability, context, and invariance in the next section –
but so far we have not identified specific forms of context sensitivity that reliably affect replication success.
These observations – that 1) direct replications vary in how successful they are, but 2) we cannot identify specific
contextual moderators – together suggest the possible presence of “hidden moderators.” That is, when faced with
a successful original study and a failed replication, there may be some unknown factor(s) that moderates the effect.
We’ve personally had several experiences that corroborate the idea that there are hidden moderators. For example,
in Lewis and Frank (2016), we were unsuccessful in replicating a simple categorization experiment. We then made
a series of iterative changes to the stimuli and instructions, for example changing the color and pattern of the stimuli
(Figure 3.5), eventually resulting in a larger (and statistically significant) effect – though still much smaller than the
original. Critically, however, each alteration that wemade to the procedure yielded a very small change in the effect,
and it would have taken us many thousands of participants to figure exactly which alteration made the difference.
(If you’re keeping score, here’s a case where stimulus color did matter to the outcome of the experiment!).
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Figure 3.5: Stimuli from Lewis and Frank (2016) (https://github.com/mllewis/xtSamp).

Another explanation for replication failure that is often cited is experimenter expertise (e.g., Schwarz and Strack
2014). On this hypothesis, replications fail because the researchers performing the replication do not have sufficient
expertise to execute the study. Like context sensitivity, this explanation is almost certainly true for some replica-
tions. In our own work, we have repeatedly performed experiments that failed due to our own incompetence!
Yet as an explanation of the pattern of metascience findings, the expertise hypothesis hasn’t been supported em-
pirically. First, team expertise was not a predictor of replication success in RPP (cf. Bench et al. 2017). More
convincingly, Many Labs 5 selected ten findings from RPP with unsuccessful replications and systematically evalu-
ated whether formal expert peer review of the protocols, including by the authors of the original study, would lead
to a larger effect sizes. Despite a massive sample size and extremely thorough review process, there was little to no
change in the effects for the vetted protocols relative to the original protocol used in RPP (Ebersole et al. 2020).
Context, moderators, and expertise seem like reasonable explanations for individual replication failures. Certainly,
we should expect them to be explanatory! But for these hypotheses to be operationalized in such a way that they
carry weight in our evaluation of the meta-scientific evidence, they must be evaluated empirically rather than
accepted uncritically. When such evaluations have been carried out, they have failed to support a large role for
these factors.

The general argument of this chapter is that everything is not all
right in experimental psychology, and hence that we need to change
our methodological practices to avoid negative outcomes like irre-
producible papers and unreplicable results. Towards that goal, we
have been presenting meta-scientific evidence on reproducibility and
replicability. But this evidence has been controversial, to say the
least! Do large-scale replication studies like RPP – or for that matter,
smaller-scale individual replications of effects like “power posing” –
really lead to the conclusion that our methods require changes? Or are
there reasons why a lower replication rate is actually consistent with a
cumulative, positive vision of psychology?
One line of argument addresses this question through the dynamics of
scientific change. There are many versions, but one is given by Wilson,
Harris, and Wixted (2020). The idea is that progress in psychology con-
sists of a two-step process by which candidate ideas are “screened” by
virtue of small, noisy experiments that reveal promising but tentative
ideas that can then be “confirmed” by large-scale replications. On this
kind of view, it’s business as usual to find that many randomly-selected
findings don’t hold up in large-scale replications and so we shouldn’t be

https://github.com/mllewis/xtSamp
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11 In Chapter 6 we will have a lot more
to say about 𝑝 < .05 but for now we’ll
mostly just treat it as a particular research
outcome.
12 This calculation, as with most other
metrics of replication success, assumes
that the underlying population effect is
exactly the same for the replication and
the original. This is a limitation because
there could be unmeasured moderators
that could produce genuine substantive
differences between the two estimates.
13 These terms basically mean the same
thing and are not used very precisely
in the literature. 𝑝-hacking is an in-
formal term that sounds like you know
you are doing something bad; some-
times people do, and sometimes they
don’t. Questionable research practices
is a more formal-sounding term that is
in principle vague enough to encompass
many ethical failings but in practice gets
used to talk about 𝑝-hacking. Unless 𝑝-
hacking intent is crystal clear, we favor
two clunkier terms: “data-dependent
decision-making” and “undisclosed ana-
lytic flexibility” describe the actual prac-
tices more precisely: trying many differ-
ent things after looking at data, typically
without reporting all of them.
14 One estimate is that 96% of (non-
preregistered) papers report positive
findings (Scheel, Schijen, and Lakens
2021)! We’ll have a lot more to say
about analytic flexibility and publication
bias in Chapters 11 and 16, respectively.
15 The mathematics of the publication
bias scenario strikes some observers as
implausible: most psychologists don’t
run dozens of studies and report only
one out of each group (Nelson, Sim-
mons, and Simonsohn 2018). Instead,
a more common scenario is to conduct
many different analyses and then report
the most successful, creating some of the
same effects as publication bias – a pro-
motion of spurious variation – without
a file drawer full of failed studies.

distressed by results like those of RPP. The key to progress is to find-
ing a small set that do hold up, which will lead to new areas of inquiry.
We’re not sure this is view is either a good description of current prac-
tice or a good normative goal for scientific progress, but we won’t focus
on that critique of Wilson et al.’s argument here. Instead, since book is
written for experimenters-in-training, we assume that you do not want
your experiment to be a false positive from a noisy screening procedure,
regardless of your feelings about the rest of the literature!
In RPP and subsequent metascience studies, original studies with lower
𝑝-values, larger effect sizes, and larger sample sizes were more likely
to replicate successfully (Yang, Youyou, and Uzzi 2020). From a the-
oretical perspective, this result is to be expected, because the 𝑝-value
literally captures the probability of the data (or any “more extreme”)
under the null hypothesis of no effect. So a lower 𝑝-value should indi-
cate a lower probability of a spurious result.11 In some sense, the funda-
mental question about the replication metascience literature is why the
𝑝-values aren’t better predictors of replicability! For example, Camerer
et al. (2018) computes an expected number of successful replications
on the basis of the effects and sample sizes – and their proportion of
successful replications is substantially lower than that number.12

One explanation is that the statistical evidence presented in papers often
dramatically overstates the true evidence from a study. That’s because
of two pervasive and critical issues: analytic flexibility (also known as
p-hacking or questionable research practices) and publication bias.13

Publication bias refers to the relative preference (of scientists and other
stakeholders, like journals) for experiments that “work” than those that
do not, where “work” is typically defined as yielding a significant result
at 𝑝 < .05. Because of this preference, it is typically easier to publish
positive (statistically significant) results. The relative absence of negative
results leads to biases in the literature. Intuitively, this bias will lead to a
literature filled with papers where 𝑝 < .05. Negative findings will then
remain unpublished, living in the proverbial “file drawer” (Rosenthal
1979).14 In a literature with a high degree of publication bias, many
findingswill be spurious because experimenters got lucky and published
the study that “worked” even if that success was due to chance variation.
In this situation, these spurious findings will not be replicable and so the
overall rate of replicability in the literature will be lowered.15

It’s our view that publication bias and its even more pervasive cousin,
analytic flexibility, are likely to be key drivers of lower replicability. We
admit that the meta-scientific evidence for this hypothesis isn’t unam-
biguous, but that’s because there’s no sure-fire way to diagnose analytic
flexibility in a particular paper – since we can almost never reconstruct
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the precise choices that were made in the data collection and analysis
process! On the other hand, it is possible to analyze indicators of publi-
cation bias in specific literatures and there are several cases where pub-
lication bias diagnostics appear to go hand in hand with replication fail-
ure. For example, in the “power posing” example described above, Sim-
mons and Simonsohn (2017) noted strong evidence of analytic flexibility
throughout the literature, leading them to conclude that there was no
evidential value in the literature. And in the case of “money priming”
(incidental exposures to images or text about money that were hypoth-
esized to lead to changes in political attitudes), strong evidence of pub-
lication bias (Vadillo, Hardwicke, and Shanks 2016) was accompanied
by a string of failed replications (Rohrer, Pashler, and Harris 2015).

 ACCIDENT REPORT

Analytic flexibility reveals a fountain of eternal youth
The way they tell it, Joseph Simmons, Leif Nelson, and Uri Simonsohn wrote their paper on “false positive psy-
chology” (Simmons, Nelson, and Simonsohn 2011) as an attempt at catharsis (Simmons, Nelson, and Simonsohn
2018). They were fed up with work that they felt exploited flexibility in data analysis to produce findings blessed
with p < .05 but likely did not reflect replicable effects. They called this practice p-hacking: trying different things
to get your p-value to be below .05.
Their paper reported on a simple experiment: they played participants either the Beatles song, “when I’m 64,” or
a control song and then asked them to report their date of birth (Simmons, Nelson, and Simonsohn 2011). This
manipulation resulted in a significant one and a half year rejuvenation effect. Listening to the Beatles seemed to
have made their participants younger!
This result is impossible, of course. But the authors produced a statistically significant difference between the
groups that, by definition, was a false positive – a case where the statistical test indicated that there was a difference
between groups despite no difference existing. In essence, they did so by trying many possible analyses and “cherry-
picking” the one that produced a positive result. This practice of course invalidates the inference that the statistical
test is supposed to help you make. Several of the practices they followed included:

– Selectively reporting dependent measures (e.g., collecting several measures and reporting only one)
– Selectively dropping manipulation conditions
– Conducting their statistical test and then testing extra participants if they did not see a significant finding
– Adjusting for gender as a covariate in their analysis if doing so resulted in a significant effect

Many of the practices that the authors followed in their rejuvenation studywere (andmaybe still are!) commonplace
in the research literature. John, Loewenstein, and Prelec (2012) surveyed research psychologists on the prevalence
of what they called questionable research practices. Most participants admitted to following some of these practices
– including exactly the same practices followed by the rejuvenation study.
For many in the field, “false positive psychology” was a galvanizing moment, leading them to recognize how
common practices could lead to completely spurious (or even impossible) conclusions. As Simmons, Nelson, and
Simonsohn wrote in their 2018 article, “Everyone knew [p-hacking] was wrong, but they thought it was wrong
the way it is wrong to jaywalk. We decided to write ‘False-Positive Psychology’ when simulations revealed that it
was wrong the way it is wrong to rob a bank.”
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3.4 Replication, theory building, and open science
Empirical measures of reproducibility and replicability in the experi-
mental psychology literature are low – lower than we may have naively
suspected and lower than we want. How do we address these issues?
And how do these issues interact with the goal of building theories? In
this section, we discuss the relationship between replication and theory
– and the role that open and transparent research practices can play.

3.4.1 Reciprocity between replication and theory
Analytic reproducibility is a prerequisite for theory building because if
the twin goals of theories are to explain and to predict experimental
measurements, then an error-ridden literature undermines this goal. If
some proportion of all numerical values reported in the literature were
simple, unintentional typos, this situation would create an extra level
of noise – irrelevant random variation – impeding our goal of getting
precise enough measurements to distinguish between theories. But the
situation is likely worse: errors are much more often in the direction
that favors authors’ own hypotheses. Thus, irreproducibility not only
decreases our precision, it also increases the bias in the literature, creat-
ing obstacles to the fair evaluation of theories with respect to data.
Replicability is also foundational to theory building. Across a range of
different conceptions of how science works, scientific theories are eval-
uated with respect to their relationship to the world. They must be sup-
ported, or at least fail to be falsified, by specific observations. It may be
that some observations are by their nature un-repeatable (e.g., a partic-
ular astrophysical event might be observed once a human lifetime). But
for laboratory sciences – and experimental psychology can be counted
among these, to a certain extent at least – the independent and skeptical
evaluation of theories requires repeatability of measurements.
Some authors have argued (following the philosopher Heraclitus), “you
can’t step in the same river twice” (McShane and Böckenholt 2014) –
meaning, the circumstances and context of psychological experiments
are constantly changing and no observation will be identical to another.
This is of course technically true from a philosophical perspective. But
that’s where theory comes in! As we discussed above, our theories pos-
tulate the invariances that allow us to group together similar observa-
tions and generalize across them.
In this sense, replication is critical to theory, but theory is also critical
to replication. Without a theory of “what matters” to a particular out-
come, we really are stepping into an ever-changing river. But a good
theory can concentrate our expectations on a much smaller set of causal
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relationships, allowing us to make strong predictions about what factors
should and shouldn’t matter to experimental outcomes. To return to an
example we discussed earlier, should stimulus color matter to the out-
come of an experiment? Our theory could tell us that it shouldn’t mat-
ter for a priming experiment (Baribault et al. 2018) but that it should
for a generalization experiment (Lewis and Frank 2016).

3.4.2 Deciding when to replicate to maximize epistemic value
As a scientific community, how much emphasis should we place on
replication? In the words of Newell (1973), “you can’t play 20 ques-
tions with nature and win”. A series of well-replicated measurements
does not itself constitute a theory. Theory construction is its own impor-
tant activity. We’ve tried to make the case here that a reproducible and
replicable literature is a critical foundation for theory building. That
doesn’t necessarily mean you have to do replications all the time.
More generally, any scientific community needs to trade off between
exploring new phenomena and confirming previously reported effects.
In a thought-provoking analysis, Oberauer and Lewandowsky (2019)
suggest that perhaps replications also aren’t the best test of theoretical
hypotheses. In their analysis, if you don’t have a theory then it makes
sense to try and discover new phenomena and then to replicate them.
If you do have a theory, you should expend your energy in testing new
predictions rather than repeating the same test across multiple replica-
tions. Analyses such as Oberauer and Lewandowsky (2019) can provide
a guide to our allocation of scientific effort.
Our goal in this book is somewhat different than the general goal of
metascientists considering how science should be conducted. Once you
as a researcher decide to do a particular experiment, we think you will
want to maximize its scientific value and so you will want it to be repli-
cable. But we aren’t suggesting that you should necessarily do a replica-
tion study. There are many concerns that go into whether to replicate
– including not only whether you are trying to gather evidence about a
particular phenomenon, but also whether you are trying to master tech-
niques and paradigms related to it. As we said at the beginning of this
chapter, not all replication is for the purpose of verification, and you as
a researcher can make an informed decision about what experimental
strategy is best for you.

3.4.3 Open science
The open science movement is, in part, a response – really a set of re-
sponses – to the challenges of reproducibility and replicability. The
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16 Another part of the open science um-
brella involves a democratization of the
scientific process through efforts to open
access to science. This process involves
both removal of barriers to access the
scientific literature but also efforts to re-
move barriers to scientific training – es-
pecially to groups historically underrep-
resented in the sciences. The hope is
that these processes increase both the
set of people and the range of perspec-
tives contributing to science. We view
these changes as no less critical than the
transparency aspects of the open science
movement, though more indirectly re-
lated to the current discussion of repro-
ducibility and replicability.
17 At least that’s a reasonable para-
phrase; there’s some interesting discus-
sion about what this quote from Horace
really means in a letter by Gould (1991).

Figure 3.6: The broad umbrella of open
science (adapted from an image created
for the Stanford Lane Library Blog).

open science (and now the broader open scholarship) movement is a
broad umbrella (Figure 3.6), but in this book we take open science to
be a set of beliefs, research practices, results, and policies that are orga-
nized around the central roles of transparency and verifiability in scien-
tific practice.16 The core of this movement is the idea of “nullius in
verba” (the motto of the British Royal Society, which roughly means
“take no one’s word for it.”17

Transparency initiatives are critical for ensuring reproducibility. As we
discussed above, you cannot even evaluate reproducibility in the ab-
sence of data sharing. Code sharing can go even further towards help-
ing reproducibility, as code makes the exact computations involved in
data analysis much more explicit than the verbal descriptions that are
the norm in papers (Hardwicke et al. 2018). Further, as we will discuss
in Chapter 13, the set of practices involved in preparing materials for
sharing can themselves encourage reproducibility by leading to better
organizational practices for research data, materials, and code.
Transparency also plays a major role in advancing replicability. This
point may not seem obvious at first – why would sharing things openly
lead to more replicable experiments? – but it is one of the major theses
of this book, so we’ll unpack it a bit. Here are a couple of routes by
which transparent practices lead to greater replication rates.

1. Sharing of experimental materials enables replications that closely
follow the original study’s methods. One critique of many repli-
cations has been that they differ in key respects from the originals.
Sometimes those deviations were purposeful, but in other cases
they were simply because the replicators could not use the origi-
nal experimental materials. Sharing materials solves this problem.

2. Sharing sampling and analysis plans allows replication of key as-
pects of design and analysis that may not be clear in verbal de-
scriptions, for example exclusion criteria or details of data pre-
processing.

3. Sharing of analytic decision-making via preregistration can lead
to a decrease in 𝑝-hacking and other practices that can introduce
bias. The strength of statistical evidence in the original study is a
predictor of replicability in subsequent studies. If original studies
are preregistered, they are more likely to report effects that are not
subject to inflation via questionable research practices.

4. Preregistration can also clarify the distinction between confirma-
tory and exploratory findings, helping subsequent experimenters
to make a more informed judgment about which effects are likely
to be good targets for replication.
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For all of these reasons, we believe that open science practices can play
a critical role in increasing reproducibility and replicability.

3.4.4 A crisis?
So, is there a “replication crisis”? The common meaning of “crisis” is
“a difficult time.” The data we reviewed in this chapter suggest that
there are real problems in the reproducibility and replicability of the
psychology literature. But there’s no evidence that things have gotten
worse. If anything, we are optimistic about the changes in practices that
have happened in the last ten years. So in that sense, we are not sure
that a crisis narrative is warranted.
On the other hand, for Kuhn (1962), the term “crisis” had a special
meaning: it is a period of intense uncertainty in a scientific field brought
on by the failure of a particular paradigm (Chapter 2). A crisis typically
heralds a shift in paradigm, in which new approaches and phenomena
come to the fore.
In this sense, the replication crisis narrative isn’tmutually exclusivewith
other crisis narratives, including the “generalizability crisis” (Yarkoni
2020) and the “theory crisis” (Oberauer and Lewandowsky 2019). All
of these are symptoms of discontent with the status quo. We share
this discontent! We are writing this book to encourage further changes
in experimental methods and practices to improve reproducibility and
replicability outcomes –many of themdriven by the broader set of ideas
referred to as “open science.” These changes may not lead to a paradigm
shift in the Kuhnian sense, but we hope that they lead to eventual im-
provements. In that sense, we think agree with those who say that the
“replication crisis” has led to a “credibility revolution” (Vazire 2018).

3.5 Chapter summary: Replication
In this chapter we introduce the notions of reproducibility – getting the
same numbers from the same analysis – and replicability – getting the
same conclusions from a new dataset. Both of these are critical prereq-
uisites of a cumulative scientific literature, yet the metascience litera-
ture has suggested that the rate of both reproducibility and replicability
in the published literature is quite a bit lower than we would hope. A
strong candidate explanation for low reproducibility is simply that code
and data are rarely shared alongside published research. Lowered repli-
cability is more difficult to explain, but our best guess is that analytic
flexibility (“𝑝-hacking”) is at least partially to blame. On our account,
replication is a meta-scientific tool for understanding the status of the
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scientific literature rather than an end in itself. Instead, we see the open
science movement, a movement focused on the role of transparency in
the scientific process, as a promising response to issues of reproducibility
and replicability.

DISCUSSION QUESTIONS

1. How would you design a measure of the context sensitivity of an experiment? Think of a measure you could
apply post hoc to a description of an experiment (e.g., from reading a paper) so that you could take a group of
experiments and annotate how context-sensitive they are on some scale.

2. Take the measure you designed above. How would you test that this measure really captured context sensitivity
in a way that was not circular? What would be an “objective measure” of context sensitivity?

3. What proportion of reproducibility failures do you think are due to questionable practices by experimenters
vs. just plain errors? How would you test your hypothesis?

READINGS

– Still a very readable and entertaining introduction to the idea of p-hacking: Simmons, J. P., Nelson, L. D.,
& Simonsohn, U. (2011). False-Positive Psychology: Undisclosed Flexibility in Data Collection and Analysis
Allows Presenting Anything as Significant. Psychological Science, 22(11), 1359-1366. https://doi.org/10.1177/
0956797611417632.

– A recent review of issues of replication in psychology: Nosek, B. et al. (2022). Replicability, Robustness, and
Reproducibility in Psychological Science. Annual Review of Psychology, 73, 719-748. https://doi.org/10.1146/
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4 ETHICS

🍏 LEARNING GOALS

– Distinguish between consequentialist, deontological, and virtue ethics frameworks
– Identify key ethical issues in performing experimental research
– Discuss ethical responsibilities in analysis and reporting of research
– Describe ethical arguments for open science practices

The fundamental thesis of this book is that experiments are the way
to estimate causal effects, which are the foundations of theory. And
as we discussed in Chapter 1, the reason why experiments allow for
strong causal inferences is because of two ingredients: a manipulation –
in which the experimenter changes the world in some way – and ran-
domization. Put a different way, experimenters learn about the world
by randomly deciding to do things to their participants! Is that even
allowed? We have placed this chapter in the

Foundations section of the book
because we think it’s critical to start the
conversation about your ethical
responsibilities as an experimentalist
and researcher even before you start
planning a study. We’ll come back to
the ethical frameworks we describe
here in Chapter 12, which deals
specifically with participant recruitment
and the informed consent process.

Experimental research raises a host of ethical issues that deserve consid-
eration. What can and can’t we do to participants in an experiment,
and what considerations do we owe to them by virtue of their deci-
sion to participate? To facilitate our discussion of these issues, we start
by briefly introducing the standard philosophical frameworks for eth-
ical analysis. We then use those to discuss problems of experimental
ethics, first from the perspective of participants and then second from
the perspective of the scientific ecosystem more broadly. We end with
an ethical argument for TRANSPARENCY.

CASE STUDY

Shock treatment
A decade after surviving prisoners were liberated from the last concentration camp, Adolf Eichmann, one of the
Holocaust’s primary masterminds, was tried for his role in the mass genocide (Baade 1961). While reflecting on his
rationale for forcibly removing, torturing, and eventually murdering millions of Jews, an unrepentant Eichmann
claimed that he was “merely a cog in the machinery that carried out the directives of the German Reich” and
therefore was not directly responsible (Kilham and Mann 1974). This startling admission gave a young researcher
an interesting idea: “Could it be that Eichmann and his million accomplices in the Holocaust were just following
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orders? Could we call them all accomplices?” (Milgram 1974).
Stanley Milgram aimed to make a direct test of whether people would comply under the direction of an authority
figure no matter how uncomfortable or harmful the outcome. He invited participants into the laboratory to serve
as a teacher for an activity (Milgram 1963). Participants were told that they were to administer electric shocks of
increasing voltage to another participant, the student, in a nearby room whenever the student provided an incorrect
response. In reality, there were no shocks, and the student was an actor who was in on the experiment and only
pretended to be in pain when the ‘shocks’ were administered. Participants were encouraged to continue admin-
istering shocks despite clearly audible pleas from the student to stop. In one of Milgram’s studies, nearly 65% of
participants administered the maximum voltage to the student.
This deeply unsettling result has become, as Ross and Nisbett (2011) say, “part of our society’s shared intellectual
legacy,” informing our scientific and popular conversation in myriad different ways. At the same time, modern
re-analyses of archival materials from the study have called into question whether the deception in the study was
effective, casting doubt on its central findings (Perry et al. 2020).
Regardless of its scientific value, Milgram’s study blatantly violates modern ethical norms around the conduct of
research. Among other violations, the procedure involved coercion that undermined participants’ right towithdraw
from the experiment. This coercion appeared to have negative consequences: Milgram noted that a number of his
participants displayed anxiety symptoms and nervousness. This observation was distressing and led to calls for
this sort of research to be declared unethical (e.g., Baumrind 1964). The ethical issues surrounding Milgram’s
study are complex, and some are relatively specific to the particulars of his study and moment (Miller 2009). But
the controversy around the study was an important part of convincing the scientific community to adopt stricter
policies that protect study participants from unnecessary harm.

4.1 Ethical frameworks
Was Milgram’s experiment (see Case Study) really ethically wrong – in
the sense that it should not have been performed? You might have the
intuition that is was unethical, due to the harms that the participants
experienced or the way they were (sometimes) deceived by the experi-
menter. Others might consider arguments in defense of the experiment,
perhaps that what we learned from it was sufficiently valuable to justify
its being conducted. Beyond simply arguing back and forth, how could
we approach this issue more systematically?
Ethical frameworks offer tools for analyzing such situations. In this sec-
tion, we’ll introduce three of the most commonly used frameworks and
discuss how each of these could be applied to Milgram’s paradigm.

4.1.1 Consequentialist theories
Ethical theories provide principles for what constitute good actions.
The simplest theory of good actions is the consequentialist theory: good
actions lead to good results. The most famous consequentialist position
is the utilitarian position, originally defined by the philosopher John
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Stuart Mill (Flinders 1992). This view emphasizes decision-making
based on the “greatest happiness principle”, or the idea that an action
should be considered morally good based on the degree of happiness
or pleasure people experience because of it, and likewise that an action
should be considered morally bad based on the degree of unhappiness
or pain people experience by the same action (Mill 1859).
A consequentialist analysis of Milgram’s study considers the study’s neg-
ative and positive effects and weighs these against one another. Did the
study cause harm to its participants? On the other hand, did the study
lead to knowledge that prevented harm or caused positive benefits?
Consequentialist analysis can be a straightforwardway to justify the risks
and benefits of a particular action, but in the research setting it is unsat-
isfying. Many horrifying experiments would be licensed by a conse-
quentialist analysis and yet feel untenable to us. Imagine a researcher
forced you to undergo a risky and undesired medical intervention be-
cause the resulting knowledge might benefit thousands of others. This
experiment seems like precisely the kind of thing our ethical framework
should rule out!

4.1.2 Deontological approaches
Harmful research performed against participants’ will or without their
knowledge is repugnant; we consider the Tuskegee Syphilis Exper-
iment, a horrifying example of such research (Case Study, below).
Considering such cases, a few rules seem obvious, for example: “re-
searchers must ask participants’ permission before conducting research
on them.” Principles like this one are now formalized in all ethical
codes for research. They exemplify an approach called deontological
(or duty-based) ethics.
Deontology emphasizes the importance of taking ethically permissible
actions, regardless of their outcome (Biagetti, Gedutis, and Ma 2020).
In general, university ethics boards take a deontological approach to
ethics (Boser 2007). In the context of research, there are four primary
principles being applied:

(1) Respect for autonomy. This principle requires that people par-
ticipating in research studies can make their own decisions about
their participation, and that those with diminished autonomy
(children, neuro-divergent people, etc.) should receive equal
protections (Beauchamp, Childress, et al. 2001). Respecting
someone’s autonomy also means providing them with all the
information they need to make an informed decision about
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1 In practice, this doesn’t mean com-
pensating participants with exorbitant
amounts of money or gifts, which might
cause other issues, like exerting an un-
due influence on low-income partici-
pants to participate. Instead “maximiz-
ing benefits” is interpreted as identify-
ing all possible benefits of participation
in the research and making them avail-
able where possible.

whether to participate in a research study (giving consent)
and giving them further context about the study they have
participated in after it is done (debriefing).

(2) Beneficence. This principle means that researchers are obligated
to protect the well-being of participants for the duration of the
study. Beneficence has two parts. The first is to do no harm.
Researchers must take steps to minimize the risks to participants
and to disclose any known risks at the onset. If risks are discov-
ered during participation, researchers must notify participants of
their discovery andmake reasonable efforts tomitigate these risks,
even if that means stopping the study altogether. The second is to
maximize potential benefits to participants.1

(3) Nonmaleficence. This principle is similar to beneficence (in fact,
beneficence and nonmaleficence were a single principle when
they were first introduced in the Belmont Report, which we’ll
discuss later) but differs in its emphasis on doing/causing no
harm. In general, harm is bad – but deontology is about intent,
not impact, so harm is sometimes warranted when the intent
is morally good. For example, administering a vaccine may
cause some discomfort and pain, but the intent is to protect the
patient from developing a deadly virus in the future. The harm
is justifiable under this framework.

(4) Justice. This principle means that both the benefits and risks of
a study should be equally distributed among all participants. For
example, participants should not be systematically assigned to one
condition over another based on features of their identity such as
socioeconomic status, race and ethnicity, or gender.

Analyzed from the perspective of these principles, Milgram’s study
raises several red flags. First, Milgram’s study reduced participants’
autonomy by making it difficult for them to voluntarily end their
involvement (participants were told up to four times to continue
administering shocks even after they expressed clear opposition).
Second, the paradigm was designed in a way that it was likely to cause
harm to its participants by putting them in a very stressful situation.
Further, Milgram’s study may have induced unnecessary harm on certain
participants by failing to screen participants for existing mental health
issues before beginning the session.
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 DEPTH

Was Milgram justified?
Was the harm done in Milgram’s experiment justifiable given that it informed our understanding of obedience
and conformity? We can’t say for sure. What we can say is that in the 10 years following the publication of Mil-
gram’s study, the number of papers on (any kind of ) obedience increased and the nature of these papers expanded
from a focus on religious conformity to a broader interest in social conformity, suggesting that Milgram changed
the direction of this research area. Additionally, in a followup that Milgram conducted, he reported that 84% of
participants in the original study said they were happy to have been involved (Milgram 1974). On the other hand,
given concerns about validity in the original study, perhaps its influence on the field was not warranted (Perry et
al. 2020).
Many researchers believe there was no ethical way to conduct Milgram’s experiment while also protecting the
integrity of the research goals, but some have tried. One study recreated a portion of the original experiment, with
some critical changes (Burger 2007). Before enrolling in the study, participants completed both a phone screening
for mental health concerns, addiction, or extreme trauma, and a formal interview with a licensed clinical psycholo-
gist, who identified signs of depression or anxiety. Those who passed these assessments were invited into the lab for
a Milgram-type learning study. Experimenters clearly explained that participation was voluntary and the decision
to participate could be reversed at any point, either by the participant themselves or by a trained clinical psycholo-
gist who was present for the duration of the session. Additionally, shock administration never exceeded 150 volts
(compared to 450 volts in the original study), and experimenters debriefed participants extensively following the
end of the session. This modified replication study found similar patterns of obedience as Milgram’s; further, one
year later, no participants expressed any indication of stress or trauma associated with their involvement in the
study.

4.1.1 Virtue-based Approaches
A final way that we can approach ethical dilemmas is through a virtue
framework. A virtue is a trait, disposition, or quality that is thought to
be a moral foundation (Annas 2006). Virtue ethics suggests that people
can learn to be virtuous by observing those actions in others they admire
(Morris and Morris 2016). Proponents of virtue ethics say this works for
two reasons: (1) people are generally good at recognizing morally good
traits in others and (2) people receive some fulfillment from living virtu-
ously. Virtue ethics differs from deontology and utilitarianism because
it focuses on a person’s character rather than on the nature of a rule or
the consequences of an action.
From a research perspective, virtue ethics tells us that in order to behave
virtuously, we must make decisions that consider the context surround-
ing the experiment (Dillern 2021). In other words, researchers should
evaluate how their studies might influence a participant’s behaviors, es-
pecially when those behaviors deviate from typical expectations. This
process is also meant to be adaptive, meaning that researchers must be
vigilant about both the changing mental states of their participants dur-
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2 The local control of ethics boards can
lead to very different practices in ethical
review across institutions, which is ob-
viously inconsistent consistent with the
idea that ethical standards should be uni-
form! In addition, critics have won-
dered about the structural issue that insti-
tutional ethics boards have an incentive
to decrease liability for the institution,
while private boards have an incentive
to provide approvals to the researchwers
who pay them (Lemmens and Freedman
2000).

ing the experimental session and whether the planned procedure is no
longer acceptable.
How can we apply this ethical framework to Milgram’s experiment?
Many virtue ethicists would probably conclude that Milgram’s ap-
proach was neither appropriate (for participants) nor adaptive. Upon
noticing increasing levels of participant distress, an experimenter
following the virtue ethics framework should have chosen to end the
session early or – even better – to have minimized participant distress
from the beginning.

4.2 Ethical responsibilities to research participants
Milgram’s shock experiment was just one of dozens of unethical hu-
man subjects studies that garnered the attention and anger of the public
in the United States. In 1978, the US National Commission for the
Protection of Human Services of Biomedical and Behavioral Research
released the Belmont Report, which described protections for the rights
of human subjects participating in research studies (Adashi, Walters, and
Menikoff 2018). Perhaps the most important message found in the re-
port was the notion that “investigators should not have sole responsibil-
ity for determining whether research involving human subjects fulfills
ethical standards. Others, who are independent of the research, must
share the responsibility.” In other words, ethical research requires both
transparency and external oversight.

4.2.1 Institutional review boards
The creation of institutional review boards (IRBs) in the United States
was an important result of the BelmontReport. While regulatory frame-
works and standards vary across national boundaries, ethical review of
research is ubiquitous across countries. In what follows, we focus on
the US regulatory framework as it has been a model for other ethical
review systems but we use the clearer label “ethics review boards” for
IRBs.
An ethics board is a committee of people who review, evaluate, and
monitor human subjects research to make sure that participants’ rights
are protected when they participate in research (Oakes 2002). Ethics
boards are local; every organization that conducts human subjects or
animal research is required to have its own ethics board or to contract
with an external one. If you are based at a university, yours likely has
its own, and its members are probably a mix of scientists, doctors, pro-
fessors, and community residents.2
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When a group of researchers have a research question they are interested
in pursuing with human subjects, they must receive approval from their
local ethics board before beginning any data collection. The ethics board
reviews each study to make sure:

1. A study poses no more than minimal risk to participants. This
means the anticipated harm or discomfort to the participant is
not greater than what would be experienced in everyday life. It is
possible to perform a study that poses greater than minimal risk,
but it requires additional monitoring to detect any adverse events
that may occur.

2. Researchers obtain informed consent from participants before col-
lecting any data. This requirementmeans experimenters must dis-
close all potential risks and benefits so that participants can make
an informed decision about whether or not to participate in the
study. Importantly, informed consent does not stop after partic-
ipants sign a consent form. If researchers discover any new po-
tential risks or benefits along the way, they must disclose these
discoveries to all participants (see Chapter 12).

3. Sensitive information remains confidential. Although regulatory
frameworks vary, researchers typically have an obligation to their
participants to protect all identifying information recorded during
the study (see Chapter 13).

4. Participants are recruited equitably and without coercion. Be-
fore ethics boards became standard, researchers often coercively
recruited marginalized and vulnerable populations to test their
research questions, rather than making participation in research
studies voluntary and providing equitable access to the opportu-
nity to participate.

CASE STUDY

The Tuskegee Syphilis Study
In 1929, The United States Public Health Service (USPHS) was perplexed by the effects of syphilis in Macon
County, Alabama, an area with an overwhelmingly Black population (Brandt 1978). Syphilis is a sexually transmit-
ted bacterial infection that can either be in a visible and active stage or in a latent stage. At the time of the study’s
inception, roughly 36% of Tuskegee’s adult population had developed some form of syphilis, one of the highest
infection rates in America (White 2006).
The USPHS recruited 400 Black males from 25–60 years of age with latent syphilis and 200 Black males without
the infection to serve as a control group to participate (Brandt 1978). The USPHS sought the help of the Macon
County Board of Health to recruit participants with the promise that they would provide treatment for community
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members with syphilis. The researchers sought poor, illiterate Black people and, instead of telling them that they
were being recruited for a research study, merely informed them that they would be treated for “bad blood”.
Because the study was interested in tracking the natural course of latent syphilis without any medical interven-
tion, the USPHS had no intention of providing any care to its participants. To assuage participants, the USPHS
distributed an ointment that had not been shown to be effective in the treatment of syphilis, and only small doses
of a medication actually used to treat the infection. In addition, participants underwent a spinal tap which was
presented to them as another form of therapy and their “last chance for free treatment.”
By 1955, just over 30% of the original participants had died from syphilis complications. It took until the 1970s
before the final report was released and (the lack of ) treatment ended. In total, 128 participants died of syphilis or
complications from the infection, 40 wives became infected, and 19 children were born with the infection (Katz
and Warren 2011). The damage rippled through two generations, and many never actually learned what had been
done to them.
The Tuskegee experiment violates nearly every single guideline for research described above – indeed in its many
horrifying violations of research participants’ agency, it provides a blueprint for future regulation to prevent any
aspect of it from being repeated: Investigators did not obtain informed consent. Participants were not made aware
of all known risks and benefits involved with their participation. Instead, they were deceived by researchers who
led them to believe that diagnostic and invasive exams were directly related to their treatment.
Perhaps most shocking, participants were denied appropriate treatment following the discovery that penicillin was
effective at treating syphilis (Mahoney, Arnold, and Harris 1943). The USPHS requested that medical professionals
overseeing their care outside of the research study not offer treatment to participants so as to preserve the study’s
methodological integrity. This intervention violated participants’ rights to equal access to care, which should have
taken precedence over the results of the study.
Finally, recruitment was both imbalanced and coercive. Not only were participants selected from the poorest of
neighborhoods in the hopes of finding vulnerable populations with little agency, but they were also bribed with
empty promises of treatment and a monetary incentive (payment for burial fees, a financial obstacle for many
sharecroppers and tenant farmers at the time).

4.2.1 Risks and benefits
Imagine that you were approached about participating in a research
study at your local university. You were only told you would be paid
$25 in exchange for completing an hour of cognitive tasks on a com-
puter. Now imagine that halfway through the session, the experimenter
revealed they would also need to collect a blood sample, “which should
only take a couple of minutes and which will really help the research
study.” Would you agree to the sample? Would you feel uncomfortable
in any way?
Participants need to understand the risks and benefits of participation in
an experiment before they give consent. To do otherwise compromises
their autonomy (a key deontological principle). In the case of this hy-
pothetical experiment, a new and unexpected invasive component of
an experiment is coercive: participants would have to choose to forfeit
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their expected compensation to opt out. They also might feel that they
have been deceived by the experimenter.
In human subjects research, deception is a specific technical term that
refers to cases when (1) experimenters withhold any information about
its goals or intentions, (2) experimenters hide their true identity (such
as when using actors), (3) some aspects of the research are under- or
overstated to conceal information, or (4) participants receive any false
or misleading information. The use of deception requires special con-
sideration from a human subjects perspective (Kelman 2017; Baumrind
1985).
Even assuming they are disclosed properly without coercion or decep-
tion, the risks and benefits of a study must be assessed from the per-
spective of the participant, not the experimenter. By doing so, we allow
participants to make an informed choice. In the case of the blood sam-
ple, the risks to the participant were not disclosed, and the benefits were
stated in terms of the research project (and the experimenter).
The benefits of participation in research can either be direct or indi-
rect, and it is important to specify which type participants may receive.
While some clinical studies and interventionsmay offer some direct ben-
efit due to participation, many of the benefits of basic science research
are indirect. Both have their place in science, but participants must ul-
timately determine the degree to which each type of benefit motivates
their own involvement in a study (Shatz 1986).

4.3 Ethical responsibilities in analysis and reporting of
research

 ACCIDENT REPORT

What data?
Dutch social psychologist Diederick Stapel contributed to more than 200 articles on social comparison, stereotype
threat, and discrimination, many published in the most prestigious journals. Stapel reported that affirming positive
personal qualities buffered against dangerous social comparison, that product advertisements related to a person’s
attractiveness changed their sense of self, and that exposure to intelligent in-group members boosted a person’s
performance on future tasks (Stapel and Linde 2012; Trampe, Stapel, and Siero 2011; Gordijn and Stapel 2012).
These findings were fresh and noteworthy at the time of publication, and Stapel’s papers were cited thousands of
times. The only problem? Stapel’s data were made up.
Stapel has admitted that when he first began fabricating data, he would make small tweaks to a few data points
(Stapel 2012). Changing a single number here and there would turn a flat study into an impressive one. Having
achieved comfortable success (and having aroused little suspicion from journal editors and others in the scientific
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3 On the other hand, if your disserta-
tion contains the cure to a terrible dis-
ease, you do have a duty to publish it!

community), Stapel eventually began creating entire data sets and passing them off as his own. Several colleagues
began to grow skeptical of his overwhelming success, however, and brought their concerns to the Psychology De-
partment at Tilburg University. By the time the investigation of his work concluded, 58 of Stapel’s papers were
retracted, meaning that the publishing journal withdrew the paper after discovering that its contents were invalid.
Everyone agrees that Stapel’s behavior was deeply unethical. But should we consider cases of falsification and fraud
to be different in kind from other ethical violations in research? Or is fraudmerely the endpoint in a continuum that
might include other practices like 𝑝-hacking? Lawyers and philosophers grapplewith the precise boundary between
sloppiness and neglect, and it can be difficult to know which one is at play when a typo or coding mistake changes
the conclusion of a scientific paper. Similarly, if a researcher engages in so-called “questionable research practices,”
at what point should they be considered to have made an ethical violation as opposed to simply performing their
research poorly?
The ethical frameworks above provide a framework for thinking about this topic. For the consequentialist, sloppy
science can lead to good outcomes for the scientist (quicker publication) but bad outcomes for the rest of the
scientific community who have to waste time and effort on papers that may not be correct. For the deontologist,
the scientist’s intention plays a key role: it is not a generally acceptable principle to knowingly use sub-standard
practices. And for the virtue ethicist, sloppiness is not a morally good trait. On all analyses, researchers have a duty
to pursue their work carefully.

As scientists, we not only have a responsibility to participants, we are
also responsible for what we do with our data and for the kinds of con-
clusions we draw. Cases like Stapel’s (see Accident Report) seem stun-
ning, but they are part of a continuum. Codes of professional ethics for
organizations like the American Psychological Association encourage
researchers to take care in the management and analysis of their data so
as to avoid errors and misstatements (Association 2022).
Researchers also have an obligation not to suppress findings based on
their own beliefs about the right answer. One unfortunate way that
this suppression can happen is when researchers selectively report their
research, leading to publication bias, as you learned in Chapter 3. Re-
searchers’ own biases can be another (invalid) rationale for not publish-
ing: it’s also an ethical violation to suppress findings that contradict your
theoretical commitments.
Importantly, researchers don’t have an obligation to publish everything
they do. Publishing in the peer-reviewed literature is difficult and time-
consuming. There are plenty of reasons not to publish an experimental
finding! For example, there’s no reason to publish a result if you believe
it is truly uninformative because of a confound in the experimental de-
sign. You also aren’t typically committing an ethical violation if you
decide to quit your job in research and so you don’t publish a study
from your dissertation.3 The primary ethical issue arises when you use
the result of a study – and how it relates to your own beliefs or to a
threshold like 𝑝 < .05 – to decide whether to publish it or not.
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4 Standards on this issue differ from field
to field. Our sense is that the rule on
self-plagiarism applies primarily to du-
plication of content between journal pa-
pers. So, for example, barring any spe-
cific policy of the funder or journal, it is
acceptable to use text from one of your
own grant proposals in a journal paper.
It is also typically acceptable to reuse text
from a conference abstract or preregistra-
tion (that you wrote, of course) when
prepare a journal paper.

As we’ll discuss again and again in this book, the preparation of research
reports must also be done with care and attention to detail (see Chap-
ter 14). Sloppiness in writing up results can lead to imprecise or over-
broad claims; and if that sloppiness extends to the reporting of data, and
analysis, it may lead to irreproducibility as well.
Further, professional ethics dictate that published contributions to the
literature be original. In general, the text of a paper must not be pla-
giarized (copied) from the text of other reports whether by you or by
another author without attribution. Copying from others outside of a
direct, attributed quotation is obviously an ethical violation because it
leads to credit for text being given to you rather than the true author.
But self-plagiarism is also not acceptable – it is a violation to receive
credit multiple times for the same product.4

4.4 Ethical responsibilities to the broader scientific
community

The open science principles that we will describe throughout this book
are not only important correctives to issues of reproducibility and repli-
cability, they are also ethical duties.
The sociologist Robert Merton described a set of norms that science is
assumed to follow: communism – that scientific knowledge belongs to
the community; universalism – that the validity of scientific results is
independent of the identity of the scientists; disinterestedness – that
scientists and scientific institutions act for the benefit of the overall en-
terprise; and organized skepticism – that scientific findings must be crit-
ically evaluated (Merton 1979).
If the products of science aren’t open, it is very hard to be a scientist
by Merton’s definition. To contribute to the communal good, papers
need to be openly available. And to be subject to skeptical inquiry, ex-
perimental materials, research data, analytic code, and software must
be all available so that analytic calculations can be verified and experi-
ments can be reproduced. Otherwise, you have to accept arguments on
authority rather than by virtue of the materials and data.
Openness is not only definitionally part of the scientific enterprise, it’s
also good for science and individual scientists (Gorgolewski and Pol-
drack 2016). Open access publications are cited more (Eysenbach 2006;
Gargouri et al. 2010). Open data also increases the potential for ci-
tation and reuse, and maximizes the chances that errors are found and
corrected.
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But these benefits mean that researchers have a responsibility to their
funders to pursue open practices so as to seek the maximal return on
funders’ investments. And by the same logic, if research participants
contribute their time to scientific projects, the researchers also owe it to
these participants to maximize the impact of their contributions (Brake-
wood and Poldrack 2013). For all of these reasons, individual scientists
have a duty to be open – and scientific institutions have a duty to pro-
mote transparency in the science they support and publish.
How should these duties be balanced against researchers’ other respon-
sibilities? For example, how should we balance the benefit of data shar-
ing against the commitment to preserve participant privacy? And, since
transparency policies also carry costs in terms of time and effort, how
should researchers consider those costs against other obligations?
First, open practices should be a default in cases where risks and costs
are limited. For example, the vast majority of journals allow authors to
post accepted manuscripts in their un-typeset form to an open reposi-
tory. This route to “green” open access is easy, cost free, and – because
it comes only after articles are accepted for publication – confers essen-
tially no risks of scooping. As a second example, the vast majority of
analytic code can be posted as an explicit record of exactly how analy-
ses were conducted, even if posting data is sometimes more complicated
due to privacy restrictions. These kinds of “incentive compatible” ac-
tions towards openness can bring researchers much of the way to a fully
transparent workflow, and there is no excuse not to take them.
Second, researchers should plan for sharing and build a workflow that
decreases the costs of openness. As we discuss in Chapter 13, while it
can be costly and difficult to share data after the fact if they were not
explicitly prepared for sharing, good project management practices can
make this process far simpler (and in many cases completely trivial).
Finally, given the ethical imperative towards openness, institutions like
funders, journals, and societies need to use their role to promote open
practices and to mitigate potential negatives (Nosek et al. 2015). Schol-
arly societies have an important role to play in educating scientists about
the benefits of openness and providing resources to steer their members
towards best practices for sharing their publication and other research
products. Similarly, journals can set good defaults, for example by re-
quiring data and code sharing except in cases where a strong justification
is given. Funders of research can – and increasingly, do – signal their
interest in openness through data sharing mandates.
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4.5 Chapter summary: Ethics
In this chapter, we discussed three ethical frameworks and evaluated
how they can be applied to our own research through the lens of Mil-
gram’s famous obedience experiment. Studies like Milgram’s prompted
serious conversations about how best to reconcile experimenter goals
with participant well-being. The publication of the Belmont Report
and later creation of ethics boards in the United States standardized
the way scientists approach human subjects research, and created much-
needed accountability. We also addressed our ethical responsibilities to
the scientific community, both in how we report our data and how we
distribute it. We hope that we have convinced you that careful, open
science is an ethical imperative for researchers!

DISCUSSION QUESTIONS

1. The COVID-19 pandemic led to an immense amount of “rapid response” research in psychology that aimed to
discover – and influence – the way people reasoned about contagion, vaccines, masking, and other aspects of
the public health situation. What are the specific ethical concerns that researchers should be aware of for this
type of research? Are there reasons for more caution in this kind of research than in other “run of the mill”
research?

2. Think of an argument against open science practices – for example, that following open science practices is
especially burdensome for researchers with more limited resources (you can make up another if you want!).
Given our argument that researchers have an ethical duty to openness, how would you analyze this argument
under the three different ethical frameworks we discussed?

READINGS

– The Belmont Report has shaped US research ethics policy from its publication to the present day. It’s also short
and quite readable: https://www.hhs.gov/ohrp/regulations-and-policy/belmont-report/index.html.

– A rich reference with several case studies on science misconduct and with strong arguments for open science:
Ritchie, S. (2020). Science fictions: How fraud, bias, negligence, and hype undermine the search for truth.
Metropolitan Books.

https://www.hhs.gov/ohrp/regulations-and-policy/belmont-report/index.html


PART II

STATISTICS
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5 ESTIMATION

🍏 LEARNING GOALS

– Estimate the causal effect of a manipulation
– Discuss differences between frequentist and Bayesian estimation
– Reason about standardized effect sizes and their strengths and weaknesses
– Quantify the relationship between variables

“In every quantitative paper we read, every quantitative
talk we attend, and every quantitative article we write, we
should all ask one question: what is the estimand? The es-
timand is the object of inquiry – it is the precise quantity
about which we marshal data to draw an inference. Yet,
too often social scientists skip the step of defining the esti-
mand. Instead, they leap straight to describing the data they
analyze and the statistical procedures they apply. Without
a statement of the estimand, it becomes impossible for the
reader to know whether those procedures were appropri-
ate.” (Lundberg, Johnson, and Stewart 2021)

In the first section of this book, our goal was to set up some of the the-
oretical ideas that motivate our approach to experimental design and
planning. We introduced our key thesis, namely that experiments are
aboutmeasuring causal effects. We also began to discuss our key themes,
TRANSPARENCY, MEASUREMENT PRECISION, BIAS REDUCTION, and GENER-
ALIZABILITY.
In this next section of the book – treating statistical topics – we will
integrate these ideas with an analytic toolkit for estimating effects and
quantifying their size (this chapter), making inferences about how these
estimates relate to a population (Chapter 6), and buildingmodels for es-
timation and inference in more complex settings (Chapter 7). Although
this book does not provide an extensive treatment of statistics, we hope
that these chapters provide a foundations – and an opinionated perspec-
tive – for beginning the statistical analysis of your experimental data,
with a focus on MEASUREMENT PRECISION.
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CASE STUDY

The Lady Tasting Tea
The birth of modern statistical inference arose from the age old conundrum of how to best make a cup of tea.
The statistician Ronald Fisher was apparently at an afternoon tea party when a lady declared that she could tell
the difference when tea was added to milk vs. milk to tea. Rather than taking her at her word, Fisher devised an
experimental and data analysis procedure to test her claim.
The lady would have to judge a set of six new cups of tea and sort them into milk-first vs. tea-first sets. Her
data would then be analyzed to determine whether her level of correct choice exceeded that expected by chance.
While this process now sounds like a quotidian experiment that might be done on a cooking reality show, it seems
unremarkable in hindsight only because it set the standard for the way science was done going forward.
The important and unusual element of the experiment was its treatment of potential design confounds such which
cup of tea was prepared first, which cup of tea was presented first, or the material that the cups were made out of.
Prior experimental practice would have been to try to equate all of the cups as closely as possible, decreasing the
influence of confounds. Fisher recognized that this strategy was insufficient because of the presence of unobserved
confounders. Only by randomizing all other aspects of the experiment could hemake strong causal inferences about
the treatment (milk then tea vs. tea then milk). We discussed the causal power of random assignment in Chapter 1
– the Lady Tasting Tea experiment is a key touchstone in the popularization of randomized experiments!

5.1 Estimating a quantity

Figure 5.1: The structure of our tea tast-
ing experiment.

An important piece of context for the
work of Ronald Fisher, Karl Pearson,
and other early pioneers of statistical
inference is that they were all strong
proponents of eugenics. Fisher was the
founding Chairman of the Cambridge
Eugenics Society. Pearson was perhaps
even worse, an avowed Social Darwinist
who believed fervently in Eugenic
legislation. These views are repugnant
and provide important context for their
statistical contributions.

If experiments are about estimating effects, how do we actually use our
experimental data to make these estimates? For our example we’ll de-
sign a slightly more modern version of Fisher’s experiment, shown in
Figure 5.1.
Our causal theory is that the tea quality is affected by milk-tea ordering,
so we’ll test that by rating tea quality both milk-first and tea-first, rep-
resented by a DAG like the one in Figure 5.2. Our intended population
to generalize to is the set of all tea drinkers, and towards that goal we
sample a set of tea-drinkers. In practice, we might do a field trial in a
cafe in which we approach patrons and ask them to participate in our
experiment in exchange for a free cup of tea. Although this sample size
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Figure 5.2: A directed acyclic graph rep-
resenting our causal theory of tea qual-
ity.
1 Technically, randomized experiments
were not invented by Fisher. Perhaps
the earliest example of a (somewhat)
randomized experiment was a trial of
scurvy treatments in the 1700s (Dunn
1997). Peirce and Jastrow (1884) also
report a strikingly modern use of ran-
domized stimulus presentation (via shuf-
fling cards). Nevertheless, Fisher’s statis-
tical work popularized randomized ex-
periments throughout the sciences, in
part by integrating them with a set of an-
alytic methods.
2 Right now we’re going to assume that
our ratings are just simple numerical val-
ues and not worry about the fact that
they come from a rating scale that is
bounded (e.g., can’t go above 7). If
you’re curious about Likert scales (the
name for discrete numerical rating scales;
pronounced LICK-ERT), we’ll talk a bit
more about them in Chapter 8.

Figure 5.3: Schematic data from the tea
tasting experiment.
3 Statisticians use “hats” like this to de-
note estimates from a specific sample.
One way to remember this is that the
“person in the hat” is wearing a hat to
dress up as the actual quantity.

is almost certainly too small to get precise estimates, for the purpose of
this example, we’ll sample 18 tea drinkers – nine in each condition.
As our manipulation, we follow Fisher in randomly assigning partici-
pants (who of course should give consent to participate) into to one of
our two conditions: milk-first and tea-first.1 This design is a between-
participants design, so each participant gets only one cup of tea. They
receive their cup of tea and taste it. Then as our measure, we ask for
a rating of the tea on a continuous scale from 1 (terrible) to 7 (deli-
cious).2

An example dataset from our experiment is shown in Figure 5.3. Even-
tually, we’ll want to estimate the effect ofmilk-first preparation on qual-
ity ratings (our effect of interest). But for now, our goal will be to esti-
mate the quality of the tea when it is milk-first [which some data sug-
gest is actually the better way, at least for British tea drinkers; Kennedy
(2003)]. More formally, we want to use our sample of 9 milk-first tea
judgments to estimate a number that we can’t directly observe, namely
the true perceived quality of all possible milk-first cups. We’ll call this
number a population parameter for reasons that will become clear in a
moment.
We’ll try to go easy on notation but some amount will hopefully make
things clearer. We will use 𝜃M (“theta”) to denote the parameter we
want to estimate (the population parameter) and ̂𝜃M, its sample esti-
mate.3

5.1.1 Maximum likelihood estimation
OK, you are probably saying, if we want our estimate of milk-first qual-
ity, shouldn’t we just take the average rating across the 9 cups of milk-
first tea? The answer is yes. But let’s unpack that choice: taking the
samplemean as our estimate ̂𝜃M is an example of an estimation approach
called maximum likelihood estimation. In general terms, maximum
likelihood estimation is a two-step process.
First, we assume amodel for how the data were generated.4 This model
is specified in terms of certain population parameters. In our exam-
ple, the model is as simple as they come: we just assume there is some
average level of tea quality and that the measurements vary around it.
Let’s take a look at the data from the milk-first condition, shown in Fig-
ure 5.4. Our observations are clustered around the mean, but they also
show some variation. Some are higher and some are lower. Variation
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4 This sense of “model” is actually a for-
mal instantiation of the type of causal
model we discussed in Chapter 1. As
you get deeper into causalmodeling, typ-
ically what you do is define a causal
“story” for the statistical process that gen-
erated a dataset, using both DAGs and
the kinds of probability distributions we
define below.

Figure 5.4: The best-fitting normal dis-
tribution for data from the milk-first
condition.

of this type is a feature of every data set. This variation can be summa-
rized via a probability distribution, a mathematical entity that describes
the properties of possible datasets.
The only probability distribution we’ll discuss here is the ubiquitous
normal distribution (also sometimes called a “Gaussian distribution”). A
normal distribution has two parameters (numbers that define its shape),
amean and a standard deviation. These two parameters define the shape
of the curve. The mean (𝜃𝑀 ) describes where its center goes, and the
standard deviation describes how wide it is. Technically, the mean is
the expected value for new samples from the distribution. Our best
guess about the value of these new samples is that they are at the mean.
We can write this more formally by introducing 𝐸[𝑀] to denote the
expectation of the variable 𝑀 .
The standard deviation 𝜎𝑀 is then a way of describing the expected
variation in these samples. A bigger standard deviation means that we
expect samples to be on average further from the mean. We can write
this formally as 𝜎𝑀 = √𝐸[(𝑀 − 𝜃𝑀)2]: the standard deviation is the
expected absolute distance between individual samples and the mean,
with the square and square root being necessary to compute distance.
Using a probability distribution to describe our dataset gives us a way of
summarizing our observations through the parameters of the distribu-
tion and encoding an assumption about what future observations might
look like. How do we fit a normal distribution to our data? We try
to find the values of the population parameters that make our observed
data as likely as possible. Let’s start with the mean.

Figure 5.5: Comparison of the best-
fitting normal distribution and a substan-
tially worse curve.

For example, if our sample mean is ̂𝜃M = 4.5, what underlying value
of 𝜃M would make these data most likely to occur? Well, suppose the
underlying parameter were 𝜃M = 2.5. Then it would be pretty unlikely
that our sample mean would be so much bigger. So ̂𝜃M = 2.5 is a poor
estimate of the population parameter based on these data (Figure 5.5).
Conversely, if the parameter were 𝜃M = 6.5, it would be a bit unlikely
that our sample mean would be so much smaller. The value of ̂𝜃M that



5 ESTIMATION 82

Figure 5.6: Bayes rule, annotated.

makes these data most likely is just 4.5 itself: the sample mean! That
is why the sample mean in this case is the maximum likelihood esti-
mate.

5.1.2 Bayesian estimation
The maximum likelihood estimation example above describes a
common approach to estimating parameters, where the researcher
completely puts aside their prior expectations about what these values
might be. This approach is an example of a frequentist statistical
approach, an approach that focuses on the long-run performance of
estimation procedures.
Often this approach makes sense, especially when we have no prior ex-
pectations about the values we are estimating. But sometimes we do
have relevant beliefs about the value. For example, before we perform
our tea experiment, we don’t know exactlywhat 𝜃M will be, but it seems
a bit unlikely that tea would be consistently rated as either horrible (1)
or perfect (7). We have what you might call weak prior expectations about
the kinds of ratings we’ll receive.
These kind of expectations are most useful when we have a very small
amount of data. Remember that our goal is to estimate a population
parameter using the sample data, and small data sets can be rather noisy.
Taking into account our prior expectations can help to temper the in-
fluence of noise. For example, if our very first participant in the ex-
periment rated their tea as terrible, we wouldn’t want to jump to the
conclusion that the tea was actually bad. Instead, we might speculate
that the participant was having a bad day or just brushed their teeth.
On the other hand, if all of our participants gave bad ratings to their tea,
the data would be more persuasive; in that case, we might want to tell
the cafe that they are serving substandard tea. The extent to which our
prior expectations should moderate our conclusions should vary with
the amount of sample data; with only a little data, our prior expecta-
tions should have more influence, but as we gather more, we should
put greater weight on the data.
How do we quantify this tradeoff between our prior expectations and
our current observations? We can do this via Bayesian estimation of

̂𝜃M. Bayesian estimation provides a principled framework for integrating
prior beliefs and data. These estimation techniques can be very helpful
in cases where data are sparse or prior beliefs are strong.
In Bayesian estimation, we observe some data 𝑑, consisting of the set of
responses in the experiment. Now we can use Bayes’ rule, a tool from
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5 We’re making the posterior purple to
indicate the combination of likelihood
(red) and prior (blue).
6 Speaking informally, “likelihood” is
just a synonym for probability, but in
Bayesian estimation, “likelihood” is a
technical term specifically referring to
probability of the data given our hypoth-
esis. This ambiguity can get a bit confus-
ing.

Figure 5.7: Bayesian inference about tea
ratings with a strong prior on low values.

Figure 5.8: Bayesian inference about tea
ratings with a weak prior on low values.

Figure 5.9: Bayesian inference about tea
ratings with a a strong prior on low val-
ues and more data.

basic probability theory, to estimate this number (Figure 5.6). Each
part of this equation has a name, and it’s worth becoming familiar with
them. The thing we want to compute, 𝑝(𝜃M|data), is called the poste-
rior probability – it tell us what we should believe about the population
parameter on tea quality, given the data we observed.5

The first part of the numerator is 𝑝(data|𝜃M), the probability of the data
we observed given our hypothesis about the participant’s ability. This
part is called the likelihood.6 This term tells us about the relationship
between our hypothesis and the data we observed – so if we think the
tea is of high quality (say 𝜃M = 6.5) then the probability of observing a
bunch of low quality ratings will be fairly low.
The second term in the numerator, 𝑝(𝜃M), is called the prior. This term
encodes our beliefs about the likely distribution of tea quality. Intu-
itively, if we think that the tea is likely of high quality, we should re-
quire more evidence to convince us that it’s bad. In contrast, if we think
it’s probably bad, a few examples of low ratings might serve to convince
us.
Figure 5.7 gives an example of the combination of prior and data. In
this example, we look at what difference the prior makes after observ-
ing 9 ratings. If we go in assuming that the tea is likely to be bad, the
posterior mean (purple line) will be pushed downward relative to the
maximum likelihood estimate (red line). This prior is operating only
over on ratings – estimates of tea quality. Later on when we talk about
comparing milk-first and tea-first ratings to get an estimate of the ex-
perimental effect, we could consider putting a prior on tea discrimination
(e.g., the experimental effect).
Priors aren’t usually as strong as the one shown above. Figure 5.8 shows
how the picture shifts when we have a weaker prior reflecting a flatter,
more widely spread belief about the distribution of ratings. Now the
posteriormean (purple) is closer to themaximum likelihoodmean (red).
This situation is more common – the prior encodes a weak assumption
that ratings won’t cluster around the ends of the scale.
The effect of the prior is also decreased when you have more data. Take
a look at Figure 5.9. The prior is the same as in Figure 5.7, but we
have more data. As a result, the posterior distribution is much more
peaked and also much closer to the data – the prior makes much less
difference.
Bayesian estimation is most important when you have strong beliefs and
not a lot of data. That can be a case where you have just a few partic-
ipants in your experiment, but it’s also good – and perhaps more com-
mon – to use Bayesian methods when you have a lot of data, but maybe
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7 This method doesn’t have to be used
only with a causal effect, it can be any
between-group difference. In the cur-
rent example, we can say with certainty
that this effect is a causal because our ex-
periment uses random assignment.
8 This is the effect of our manipulation
– what we sometimes call an “interven-
tion” as well. “Treatment” is a term that
comes from medical statistics but is used
more broadly in statistics now.

Figure 5.10: Estimating the average
treatment effect from the tea-tasting
data.
9 For simplicity, we’re assuming that the
standard deviations in each tea group are
equal.

not thatmuch data about particular units that you care about. For exam-
ple, you might have a large dataset about the effects of an educational
intervention but not that much data about how it affects a particular
subgroup. Bayesian estimates and maximum likelihood estimates will
exactly coincide either under a flat prior (a prior that makes any value
equally likely) or as the amount of data goes to infinity.

5.2 Estimating and comparing effects
We’ve now covered estimating a single parameter (the mean for people
who had milk-first tea) using both frequentist and Bayesian methods.
But recall that what we really wanted to do was to estimate the causal
effect we were interested in, namely the milk-first vs. tea-first effect. In
this section, we’ll discuss how to estimate the effect, and then how to
use effect size measures to compare effects across experiments (as well
as some of the pros and cons of doing so).7

5.2.1 Estimating the treatment effect
Let’s refer to the causal effect we care about as our treatment effect.8
In practice, estimating 𝛽 (a parameter describing the treatment effect) is
going to be a pretty straightforward extension to what we did before.
In the maximum likelihood framework, we could posit that ratings in
each group (milk-first and tea-first) follow a normal distribution, but
that these normal distributions might have different means and standard
deviations. Extending the notation introduced above, let’s term the pa-
rameters for the tea-first group 𝜃T (the mean) and 𝜎 (the standard devia-
tion). To estimate the treatment effect, we are positing amodel inwhich
the milk-first ratings are normally distributed with mean 𝜃M = 𝜃T + 𝛽
andwith standard deviation 𝜎.9 This equation says thatmilk-first ratings
have the same distribution as tea-first ratings, except that their average
is shifted by 𝛽. Setting our model up this way then lets us compute ̂𝛽,
our estimate of the treatment effect in our sample.
As in the one-sample case (i.e., estimating the mean of just the milk-
first group), maximum likelihood estimation would then proceed by
finding the value of 𝛽 that makes the data most likely under the assumed
model. As you’d probably expect, this estimate ̂𝛽 turns out to be simply
the difference in sample means, ̂𝜃M − ̂𝜃T. You can see this difference
pictured in Figure 5.10.
In the Bayesian framework, we would again specify a prior 𝑝(𝛽) that
encodes our prior beliefs about the size and direction of the treatment
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10 This equation says that the probabil-
ity of any value of 𝛽 is “proportional to”
1, meaning that it’s constant (“flat”) re-
gardless of what value 𝛽 takes.

11 The measures of variability that we
discuss here account for statistical uncer-
tainty reflecting the fact that we have
only a finite sample size. If the sample
size were infinite, there would be no un-
certainty of this kind. Statistical uncer-
tainty is only one kind of uncertainty,
though. A more holistic view of the
overall credibility of an estimate should
also account for other things outside of
the model, like study design issues and
bias.

effect. If we have no prior beliefs at all, thenwe could specify a flat prior,
𝑝(𝛽) ∝ 1.10. If we believe the treatment effect is likely to favor milk-
first pouring (𝛽 > 0), we could specify the prior is a normal distribution
centered at some positive value (e.g., 𝛽 = 0.5); the standard deviation of
this priorwould encode how certainwe are about our prior beliefs. And
if we have no prior beliefs about the direction of the treatment effect,
but we think it is unlikely to be very large, we could specify a normal
prior centered at 0, which has the effect of “shrinking” the estimates
closer to 0.11

As in our example above, maximum likelihood estimates and Bayesian
estimates are going to be pretty similar if we have a lot of data or weak
priors. They will only diverge when we have strong priors or relatively
little data. The reason we are setting up these two different frameworks,
however, is that they provide very different inferential tools, as we’ll see
in the next chapter.

5.2.2 Measures of effect size
Once we have measured something, we need to make a decision about
how to describe this effect to others. Sometimes we are working with
fairly intuitive relationships that are easy to describe. A researchermight
say, for example, that people who received milk-first tea drank the tea,
on average, 5 minutes quicker than people who received tea-first tea
(i.e., that ̂𝛽 = 5 minutes). Time is measured in units like minutes and
seconds and so we all have a shared understanding of what 5 minutes
means.
But what about our participants’ ratings of tea quality, which were pro-
vided on an arbitrary 7-point rating scale that we devised? What does it
mean to that participants who drankmilk-first tea rated it 1 point higher
than participants who drank tea-first tea (i.e., that ̂𝛽 = 1 point)? And
how is this difference comparable to, for instance, a 1-point change on
a scale that has similar anchors (“terrible” and “delicious”) but uses a
100-point rating system?
To provide a common language for describing these relationships, some
researchers use standardized effect sizes. A common standardized effect
size is Cohen’s d, which provides a standardized estimate of the differ-
ence between two means. There are many different ways to calculate
Cohen’s d (Lakens 2013), but all approaches are usually some variant of
the following formula:

𝑑 = 𝜃M − 𝜃T
𝜎pooled
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12 Cohen’s 𝑑, also referred to as a stan-
dardized mean difference (SMD), can be
tricky to apply to more complex exper-
imental designs, such as when you have
within-participant designs and multiple
measurements of each participant. For
some guidance on this topic, see Lakens
(2013).

where the difference between means (𝜃T and 𝜃M) is divided by the
pooled standard deviation 𝜎pooled. Intuitively, what you’re doing is
taking the study effect (𝛽) and dividing it – scaling it – by the variation
we saw between individuals in the study.

Figure 5.11: Schematic effect size com-
putation.

Let’s compute this measure for our tea-drinking study. We can just
plug in the estimates we see in Figure 5.10 and compute the standard
deviation of our observed data:

̂𝑑 =
̂𝜃M − ̂𝜃T
𝜎̂pooled

= 4.5 − 3.5
1.25 = 1

1.25 = 0.80

In other words, the effect size of the difference between the two con-
ditions is .8 standard deviations. This process is shown graphically in
Figure 5.11.12

We previously said that people who drank milk-first tea had quality
ratings that were, on average, 1 point higher on a 7-point scale (𝛽 = 1
point). Cohen’s d translates the arbitrary units of our rating scale into
a unit-less effect size that is measured in terms of the variation in the
data. You may find yourself wondering: “why would I ever describe
things in terms of standard deviations?” The key benefit is that it allows
us to compare the size of the effect between studies that use different
measures.
Let’s say that we ran a replication of our tea study with two changes:
(1) we studied patrons in a US cafe instead of a UK cafe, and (2) we
used a 100-point quality rating scale instead of a 7-point scale. Imagine
that, just as we found that participants in the UK rated the milk-first
tea 1-point higher on a 7-point quality scale, US participants rated the
milk-first tea 1-point higher on a 100-point quality scale. It seems clear
that these effects are different because of the difference in scale. But
how different?
It might at first seem reasonable just to normalize by the length of the
scale. So maybe the UK experimental participants showed a 1/7 rating
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13 If you’d like to learn more about
other varieties of effect size, take a look
at Fritz, Morris, and Richler (2012) and
Lakens (2013).

effect and theUS participants showed a 1/100 rating effect. The trouble
with this move is that it presupposes that participants from two differ-
ent populations are using two different scales in exactly the same way!
For example, maybe US participants made very clumpy judgments that
were mostly centered around 50 (perhaps because of a lack of milk tea
experience). Standardized effect sizes get around this kind of issue by
scaling according to the variability of the data.
Let’s compute the effect size for the cross-cultural replication. We’ll
imagine that participants who drank milk-first tea gave an average rat-
ing of 50/100 and participants who drank tea-first tea rated it 49 on
average. But if their variability was also relatively lower, perhaps the
standard deviation of their ratings was only 5. Using the formula above,
we find

̂𝑑𝑈𝑆 =
̂𝜃M − ̂𝜃T
𝜎̂pooled

= 50 − 49
5 = 1

5 = 0.2

A Cohen’s d of .2 means that US cafe patrons rated their tea .2 stan-
dard deviations higher when it was milk-first, much smaller than the .8
standard deviation difference in the UK patrons.
There are no hard and fast rules for interpreting what makes a big ef-
fect or a small effect, but people often refer back to a standard suggested
by Cohen (1992). On those standards, 𝑑 = 0.8 is a “large effect”, and
𝑑 = 0.2 is a “small effect.” But these effect size interpretation norms are
somewhat arbitrary. The key point here was that US and UK patrons
had the same raw score change in quality ratings ( ̂𝛽 = 1) and standard-
izing the differences allowed us to communicate that the difference was
larger among the UK patrons.
Cohen’s d is one of many standardized effect sizes that researchers can
use. Just as Cohen’s d standardizes differences in group means, there
are also generalizations that allow for continuous treatment variables or
covariate adjustment (e.g., Pearson’s r, as we discuss below; 𝑟2; or 𝜂2).
And there is a whole other set of effect-size measures for relationships
between binary variables (e.g., odds ratio). We’ll be using effect sizes
throughout the book, but we’ll be using Cohen’s d as our example.13

5.2.3 Pros and cons of standardizing effect sizes
Standardizing effect size helps communicate that a 1-point change on
a 7-point scale is not the same as a 1-point change on a 100-point scale.
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But is it any better to say that the first change represents a 0.80 stan-
dard deviation difference and the second a 0.08 standard deviation dif-
ference?
Effect sizes allow us to compare results across studies more easily. Across
studies, researchers use different measures, different study designs, and
different populations. Standardization gives us a “common language”
to describe estimated relationships in these varied contexts. This lan-
guage is helpful when we want to aggregate and compare effects across
studies via meta-analysis. And it is also helpful when planning new stud-
ies. When trying to figure out how many participants to run in a study,
almost all techniques for sample size planning use standardized effect
sizes to determine how much data would be needed to reliably detect
an effect.
Standardizing effect sizes has limitations, though. For example, if two
interventions produce the same absolute change in the same outcome
measure, but are studied in different populations in which the variabil-
ity on the outcome differs substantially, the interventions would pro-
duce different standardized mean differences (Baguley 2009) (see the
Depth box “Reliability paradoxes!” in Chapter 8).
Imagine we conducted our tea experiment again, but this time with
(decaf ) tea, and focusing on children. Maybe milk-first tea tastes the
same amount better than tea-first tea for kids and for adults. But kids
are, as a rule, more variable in their responding than adults. This higher
level of variability would lead us to observe a smaller effect size in kids
vs. adults. Recall that our UK adult SD was 1.25, and our effect size
was 𝑑 = .8. Imagine that children’s SD is 2.5. In this scenario, even if
tea led to the same 1-point absolute change in ratings among adults and
children, the standardized effect size for kids would look half as big:

̂𝑑𝑘𝑖𝑑𝑠 =
̂𝜃M − ̂𝜃T
𝜎̂pooled

= 5 − 4
2.5 = 1

2.5 = .4

This example highlights some of the challenges with standardization. If
we focused on the fact that both adults and children show a 1-point
change in ratings levels ( ̂𝛽 = 1), we would conclude that milk-first
tea ordering is as much better for adults as kids. If we focused on the
standardized effect sizes, however, we would conclude that the milk
ordering effect is twice as big for adults.
So which is better: describing raw measures or standardized effect sizes?
In general our response is “Why not both?” But if you wanted to pick
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Figure 5.12: The relationship between
age and milk-first tea rating.
14 Remember, this is a correlational rela-
tionship, and there’s no causal inference
possible here.
15 This looks a little tricky, but it’s ac-
tually very related to the basic concepts
we’ve already seen. Rememberwhenwe
introduced the standard deviation, we
described it as the expected distance be-
tween new samples from a distribution
and the mean of that distribution. The
covariance is very related: the standard
deviation is just √𝐶𝑜𝑣(𝑋, 𝑋), in other
words, the square root of the covariance
of a variable with itself.

Figure 5.13: Estimating the covariation
between age and milk-first tea rating.

one or the other, we recommend considering what type of measure-
ment you are using. With measures that yield common measurement
units that are likely to be reported inmany studies already, use raw scores
(Baguley 2009). For example, if your study uses physical units such as
milliseconds (e.g., for reaction times) or counts (e.g., for a study track-
ing an outcome like number ofwords), thesemeasurements can be quite
useful to compare across studies. Reporting raw measurements also can
allow you to checkwhether yourmeasurements make sense – for exam-
ple, a reaction time of 70milliseconds is inhumanly fast, while a reaction
time of 10 seconds might be extremely slow (at least, for many speeded
tasks).
In contrast, we recommend using standardized effect sizes for cases
where the measurement is relatively unlikely to be comparable with
other studies in its original form, or unlikely to be meaningful on its
own. For example, reporting the effect of an intervention on raw math
test scores is only meaningful if the reader knows how many items are
on the test, how difficult it is, and so forth. In such a case where there
it is hard for a reader to be “calibrated” to the specific measurement
units you are using, standardized effect sizes may be the best way to
report your finding (Kelley and Preacher 2012).

5.3 Estimating the relationship between variables
Our focus up until now has been in estimating individual effects, but
sometimes we also want to estimate the relationship between two dif-
ferent variables. Extending our example, Figure 5.12 shows the rela-
tionship between the age of the tea taster and their rating of milk-first
tea. It seems that younger people overall like tea less than older people.14
How could we quantify this result?
The first concept we need is covariance. Covariance captures the de-
gree to which we expect two variables to deviate from their means in
the same direction. We’re looking at milk-first tea ratings 𝑀 and partic-
ipant ages 𝐴. We can write the covariance between these two variables
as

𝐶𝑜𝑣(𝑀, 𝐴) = 𝐸[(𝑀 − 𝜃𝑀)(𝐴 − 𝜃𝐴)]

This formula expresses the expected product of how much each ob-
servation differs from its expectation (mean) along each variable. Fig-
ure 5.13 shows these differences, which are multiplied together for each
point to get the covariation.15



5 ESTIMATION 90

This covariance number gives us an estimate of how much age and rat-
ings covary, but its units are a bit funny: it’s hard to know what to make
of an expected deviation of 1 point-year. We can do a simple trick to
standardize its units and make it into a wonderful form of effect size
called the correlation coefficient (denoted 𝑟). Remember that to create
effect sizes above, we divided by the standard deviation of the variable.
Here all we have to do is divide by the standard deviation of both vari-
ables.

𝑟𝑀,𝐴 = 𝐶𝑜𝑣(𝑀, 𝐴)
𝜎𝑀𝜎𝐴

In other words, the correlation between two variables is the standard-
ized covariation.
The correlation coefficient is the most ubiquitous measure of associa-
tion between variables. It ranges between -1, where two variables co-
vary in exactly the opposite direction, to 1, when two variables covary
perfectly. A correlation means that there is no association between two
variables. A correlation of -1 or 1 doesn’t mean that these two vari-
ables have the same scale, however: it just means that they “move to-
gether.”

This section has described one way of
looking at a correlation coefficient: as
standardized covariation. For a great
discussion of all the different ways of
thinking about correlations, see Lee
Rodgers and Nicewander (1988).

Critically, a correlation is an effect size. Correlations can be compared
across different measures and different studies (including both experi-
mental and observational studies), making it a very valuable scale-free
comparison tool.

5.4 Chapter summary: Estimation
In this chapter, we introduced the idea of estimating both individual
measurements and treatment effects fromobserved data. These ideas are
simple but they lay the foundations for hypothesis testing and modeling
(our next two chapters). Further, we set up the distinction between
Bayesian and frequentist approaches, which we will expand in the next
chapter since these traditions provide different inferential tools.

DISCUSSION QUESTIONS

1. In this chapter you learned about estimation, and in this book more generally, we have argued that the goal
of an experiment is to provide a maximally precise estimate of a causal effect. Psychology as a field has often
been criticized for focusing too much on inference and too little on estimation. Find an article in the journal
Psychological Science that reports on an experiment or series of experiments and read the abstract. Does it
mention an estimate of any particular quantity? What might be the benefits of reporting estimates in the study
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abstract?
2. Try the same exercise with a paper in the New England Journal of Medicine or Journal of the American Medical

Association. Find a paper and check if there is a mention of any specific quantity being estimated. (We suspect
there will be!) Consider this contrast between the medical article and the psychology article. What do you
make of this difference between fields?

READINGS

– A great narrative introduction to the history and practice of statistics: Salsburg, D. (2001). The lady tasting tea:
How statistics revolutionized science in the twentieth century. Macmillan.

– An open source statistics textbook that follows a similar approach as Chapters 5 – 7: Poldrack, R. (2022). Statis-
tical thinking for the 21st century. Available free online at https://statsthinking21.org.
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🍏 LEARNING GOALS

– Discuss the purpose of statistical inference
– Define p-values and Bayes Factors
– Consider common fallacies about inference (especially for p-values)
– Reason about sampling variability
– Define and reason about confidence intervals

We’ve been arguing that experiments are about measuring effects. The
effects we are interested in are causal effects for a group of people, but
that group is almost always bigger than the participants in an experi-
ment. Statistical inference is the process of going beyond the specific
characteristics of the sample that you measured to make generalizations
about the broader population.
Chapter 5 already showed us how to make one simple inference: esti-
mating population parameters using both frequentist and Bayesian tech-
niques. Estimating population parameters is an important first step. But
often we want to make more sophisticated inferences so that we can an-
swer questions such as:

1. How likely is it that this pattern of measurements was produced
by chance variation?

2. Do these data provide more support for one hypothesis or an-
other?

3. How precise is our estimate of an effect?
4. What portion of the variation in the data is due to a particular ma-

nipulation (as opposed to variation between participants, stimulus
items, or other manipulations)?

Question (1) is associated with one particular type of statistical infer-
ence method – null hypothesis significance testing (NHST) in the fre-
quentist statistical tradition. NHST has become synonymous with data
analysis, such that in the vast majority of research papers (and research
methods courses), all of the reported analyses are tests of this type. Yet
this equivalence is quite problematic.
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1 In the information theoretic sense, as
well as the common sense!

Figure 6.1: Clarifying the distinc-
tions between Bayesian and Frequen-
tist paradigms and the tools they offer
for measurement and hypothesis testing.
Formany settings, we think themeasure-
ment mindset is more useful. Adapted
from Kruschke and Liddell (2018).
2 If you’re interested in going deeper,
here are two books that have been re-
ally influential for us. The first is Gelman
and Hill (2006) and its successor Gelman,
Hill, and Vehtari (2020), which teach re-
gression and multi-level modeling from
the perspective of data description. The
second is McElreath (2018), a course on
building Bayesian models of the causal
structure of your data. Honestly, nei-
ther is an easy book to sit down and
read (unless you are the kind of person
who reads statistics books on the subway
for fun) but both really reward detailed
study. We encourage you to get together
a reading group and go through the ex-
ercises in one of these together. It’ll be
well worth while in its impact on your
statistical and scientific thinking.

The move to “go test for significance” before visualizing your data and
trying to understand sources of variation (participants, items, manipula-
tions, etc.) is one of the most unhelpful strategies for an experimenter.
Whether 𝑝 < .05 or not, a test of this sort gives you literally one bit of in-
formation about your data.1 Considering effect sizes and their variation
more holistically, including using the kinds of visualizations we advo-
cate in Chapter 15, gives you a much richer sense of what happened in
your experiment!
In this chapter, we will describe NHST, the conventional method that
many students still learn (and many scientists still use) as their primary
method for engaging with data. All practicing experimentalists need
to understand NHST, both to read the literature and also to apply this
method in appropriate situations. For example, NHST may be a rea-
sonable tool for testing whether an intervention leads to a difference
between a treatment condition and an appropriate control. But we will
also try to contextualize NHST as a very special case of a broader set of
statistical inference strategies. Further, we will continue to flesh out our
account of how some of the pathologies of NHST have been a driver
of the replication crisis.
If NHST approaches have so many issues, what should replace them?
Figure 6.1 shows one way of organizing different inferential approaches.
There has been a recent move towards the use of Bayes Factors to quan-
tify the evidence in support of different candidate hypotheses. Bayes
Factors can help answer questions like (2). We introduce these tools, and
believe that they have broader applicability than the NHST framework
and should be known by students. On the other hand, Bayes Factors are
not a panacea. They have many of the same problems as NHST when
they are applied dichotomously.
Instead of dichotomous frequentist or Bayesian hypothesis testing, we
followour thematic emphasis onMEASUREMENT PRECISION and advocate
for a measurement strategy, which is more suited towards questions (3)
and (4) (Cumming 2014; Kruschke and Liddell 2018). The goal of these
strategies is to yield an accurate and precise estimate of the relationships
underlying observed variation in the data.
This isn’t a statistics book and we won’t attempt to teach the full array
of important statistical concepts that will allow students to build good
models of a broad array of datasets. (Sorry!).2 But we do want you to
be able to reason about inference and modeling. In this chapter, we’ll
start by making some inferences about our tea-tasting example from the
last chapter, using this example to build up intuitions about hypothesis
testing and inference. Then in Chapter 7, we’ll start to look at more
sophisticated models and how they can be fit to real datasets.
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3 As in the previous chapter, we’re only
capturing statistical uncertainty. A holis-
tic view of a particular estimate’s cred-
ibility also include everything else you
know about the study design.

Figure 6.2: Sampling distribution for the
treatment effect in the tea-tasting ex-
periment, given many different repeti-
tions of the same experiment, each with
N=9 per group. Circles represent aver-
age treatment effects from different indi-
vidual experiments, while the thick line
represents the form of the underlying
distribution.

6.1 Sampling variation
In Chapter 5, we introduced Fisher’s tea-tasting experiment and dis-
cussed how to estimate means and differences in means from our ob-
served data. These so-called “point estimates” represent our best guesses
about the population parameters given the data – and possibly also given
our prior beliefs. We can also report how much statistical uncertainty
is involved in these point estimates.3 Quantifying and reasoning about
this uncertainty is an important goal: in our original study we only had
9 participants in each group, which will only provide a low precision
(i.e., highly uncertain) estimate of the population. By contrast, if we
repeated the experiment with 200 participants in each group, the data
would be far less noisy, and we would have much less uncertainty, even
if the point estimates happened to be identical.

6.1.1 Standard errors
To characterize the uncertainty in an estimate, it helps to picture its
sampling distribution, which is the distribution of the estimate across
different, hypothetical samples. That is, let’s imagine that we conducted
the tea experiment not just once, but dozens, hundreds, or even thou-
sands of times. This idea is often called repeated sampling as a shorthand.
For each hypothetical sample, we use similar recruitment methods to
recruit a new sample of participants, and we compute ̂𝛽 for that sam-
ple. Would we get exactly the same answer each time? No, simply
because the samples will have some random variability (noise). If we
plotted these estimates, ̂𝛽, we would get the sampling distribution in
Figure 6.2.

CODE

In this chapter and the subsequent statistics and visualization chapters of the book, we’ll try to facilitate understand-
ing and illustrate how to use these concepts in practice by giving the R code we use in constructing our examples
in these code boxes. We’ll assume that you have some knowledge of base R and the Tidyverse – to get started with
these, go ahead and take a look at Appendix D if you haven’t already. Although our figures are often drawn by
hand, even the hand-drawn ones are based on actual simulation results!
Since we’re going to be working with lots of data from the tea tasting example, we wrote a function called
make_tea_data() that creates a tibblewith some (made up) data from our modern tea-tasting experiment. You
can find the function on GitHub (https://github.com/langcog/experimentology/blob/main/helper/tea_helper.
qmd) if you want to follow along.

tea_data <- make_tea_data(n_total = 18)

https://github.com/langcog/experimentology/blob/main/helper/tea_helper.qmd
https://github.com/langcog/experimentology/blob/main/helper/tea_helper.qmd
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Figure 6.3: Comparing sampling distri-
butions for the treatment effect with
smaller and larger size samples.

Now imagine we also did thousands of repetitions of the experiment
with 𝑛 = 200 per group instead of 𝑛 = 9 per group. Figure 6.3 shows
what the sampling distribution might look like in that case. Notice how
much narrower the sampling distribution becomes when we increase
the sample size, showing our decreased uncertainty. More formally, the
standard deviation of the sampling distribution itself, called the standard
error, decreases as the sample size increases.
The sampling distribution is not the same thing as the distribution of tea
ratings in a single sample. Instead, it’s a distribution of estimates across
samples of a given size. In essence, it tells us what the mean of a new
experiment might be, if we ran it with a particular sample size.

CODE

To do simulations where we repeat the tea-tasting experiment over and over again, we’re using a special tidyverse
function from the purrr library: map(). map() is an extremely powerful function that allows us to run another
function (in this case, the make_tea_data() function that we introduced last chapter) many times with different
inputs. Here we create a tibble made up of a set of 1000 runs of the make_tea_data() function.

samps <- tibble(sim = 1:1000) |>
mutate(data = map(sim, \(i) make_tea_data(n_total = 18))) |>
unnest(cols = data)

Next, we just use the group_by() and summarise() workflow from Appendix D to get the estimated treatment
effect for each of these simulations.

tea_summary <- samps |>
group_by(sim, condition) |>
summarise(mean_rating = mean(rating)) |>
group_by(sim) |>
summarise(delta = mean_rating[condition == "milk first"] -

mean_rating[condition == "tea first"])

This tibble gives us what we would need to plot the sampling distributions above in Figure 6.2 and Figure 6.3.

6.1.2 The central limit theorem
We talked in the last chapter about the normal distribution, a conve-
nient and ubiquitous tool for quantifying the distribution of measure-
ments. A shocking thing about sampling distributions for many kinds
of estimates – and for all maximum likelihood estimates – is that they
become normally distributed as the sample size gets larger and larger.
This result holds even for estimates that are not even remotely normally
distributed in small samples!
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Figure 6.4: Samping distribution of sam-
ples from a biased coin (N=2 flips per
sample). Bar height is the proportion of
flips resulting in a particular mean.

Figure 6.5: Sampling distribution for 2,
8, 32, and 128 flips.

For example, say we are flipping a coin and we want to estimate the
probability that it lands heads (𝑝𝐻). If we draw samples each consisting
of only 𝑛 = 2 coin flips, Figure 6.4 is the sampling distribution of the
estimates ( ̂𝑝𝐻). This sampling distribution doesn’t look normally dis-
tributed at all – it doesn’t have the characteristic “bell curve” shape! In
a sample of only two coin flips, ̂𝑝𝐻 can only take on the values 0, 0.5, or
1.
But look what happens as we draw increasingly larger samples in Fig-
ure 6.5: We get a normal distribution! This tendency of sampling distri-
butions to become normal as 𝑛 becomes very large reflects a deep and
elegant mathematical law called the Central Limit Theorem.
The practical upshot is that the Central Limit Theorem directly helps
us characterize the uncertainty of sample estimates. For example,
when the sample size is reasonably large (approximately 𝑛 > 30 in the
case of sample means) the standard error (i.e., the standard deviation
of the sampling distribution) of a sample mean is approximately
𝑆𝐸 = 𝜎/√𝑛. The sampling distribution becomes narrower as the
sample size increases because we are dividing by the square root of the
number of observations.

CODE

Even though our figures are hand-drawn, they’re based on real simulations. For our central limit theorem simu-
lations, we again use the map() function. We set up a tibble with the different values we want to to try (which
we call n_flips). Then we make use of the map() function to run rbinom() (random binomial samples) for each
value of n_flips.
One trick we make use of here is that rbinom() takes an extra argument that says how many of these random
values you want to generate. Here we generate nsamps = 1000 samples, giving us 1000 independent replicates at
each n. But returning an array of 1000 values for a single value of n_flips results in something odd: the value
for each element of flips is an array. To deal with that, we use the unnest() function, which expands the array
back into a normal tibble.

n_samps <- 1000
n_flips_list <- c(2, 8, 32, 128)

sample_p <- tibble(n_flips = n_flips_list) |>
mutate(flips = map(n_flips, \(f) rbinom(n = n_samps, size = f, prob = .7))) |>
unnest(cols = flips) |>
mutate(p = flips / n_flips)



6 INFERENCE 97

4 Actually, right after establishing .05 as
a cutoff, Fisher then writes that “in the
statistical sense, we thereby admit that
no isolated experiment, however signif-
icant in itself, can suffice for the ex-
perimental demonstration of any natu-
ral phenomenon… in order to assert that
a natural phenomenon is experimentally
demonstrable we need, not an isolated
record, but a reliable method of proce-
dure. In relation to the test of signifi-
cance, we may say that a phenomenon is
experimentally demonstrable when we
know how to conduct an experiment
which will rarely fail to give us a statisti-
cally significant result.” In other words,
Fisher was all for replication!
5 Because we’re looking at both tails of
the distribution, this is called a “two-
tailed” test.

6.2 From variation to inference
Let’s go back to Fisher’s tea-tasting experiment. The first innovation
of that experiment was the use of randomization to recover an estimate
of the causal effect of milk ordering. But there was more to Fisher’s
analysis than we described.
The second innovation of the tea-tasting experiment was the idea of
creating a model of what might happen during the experiment. Specif-
ically, Fisher described a hypothetical null model that would arise if the
lady had chosen cups by chance rather than because of some tea sen-
sitivity. In our tea-rating experiment, the null model describes what
happens when there is no difference in ratings between tea-first and
milk-first cups. Under the null model, the true treatment effect (𝛽) is
zero.
Even with an actual treatment effect of zero, across repeated sampling,
we should see some variation in ̂𝛽, our estimate of the treatment effect.
Sometimes we’ll get a small positive effect, sometimes a small negative
one. Occasionally just by chance we’ll get a big effect. This is just sam-
pling variation as we described above.
Fisher’s innovation was to quantify the probability of observing vari-
ous values of ̂𝛽, given the null model. Then, if the observed data that
were very low probability under the null model, we could declare that
the null was rejected. How unlikely must the observed data be, in or-
der to reject the null? Fisher declared that it is “usual and convenient
for experimenters to take 5 percent as a standard level of convenience,”
establishing the .05 cutoff that has become gospel throughout the sci-
ences.4

Let’s take a look at what the null model might look like. We already
tried out repeating our tea-tasting experiment thousands of times in our
discussion of sampling above. Now in Figure 6.6, we do the same thing
but we assume that the null hypothesis of no treatment effect is true.
The plot shows the distribution of treatment effects ̂𝛽 we observe: some
a little negative, some a little positive, and a few substantially positive
or negative, but mostly zero.
Let’s apply the 𝑝 < .05 standard. If our observation has less than a 5%
probability under the null model, then the null model is likely wrong.
The red dashed lines on Figure 6.6 show the point below which only
2.5% of the data are found and the point above which only 2.5% of the
data are found. These are called the tails of the distribution. Because
we’d be equally willing to accept milk-first tea or tea-first tea being bet-
ter, we consider both positive and negative observations as possible.5
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6 The “more extreme” part deserves a
little explanation. Any individual out-
come is relatively unlikely by itself, just
because it’s surprising that the estimate is
that exact value (we’re simplifying here,
it gets a bit trickier when you are talk-
ing about real numbers). What we care
about instead is a group of values. The
ones that are in the middle of the distri-
bution are, considered as a group, quite
likely; the ones on the tails are, as a group,
less likely. We want to know if the prob-
ability of the group of datapoints that
includes our observation and anything
even further out on the tails is collec-
tively less than .05.

CODE

To simulate our null model, we can do the same kind of thing we did before, just specifying to our
make_tea_data() function that the true difference in effects is zero!

n_sims <- 1000
null_model <- tibble(sim = 1:n_sims, n = 18) |>
mutate(data = map(sim, \(i) make_tea_data(n_total = n, delta = 0))) |>
unnest(cols = data)

Again we use group_by() and summarise() to get the distribution of treatment effects under the null hypothesis.

null_model_summary <- null_model |>
group_by(sim, condition) |>
summarise(mean_rating = mean(rating)) |>
group_by(sim) |>
summarise(delta = mean_rating[condition == "milk first"] -

mean_rating[condition == "tea first"])

Figure 6.6: One example of the distribu-
tion of treatment effects under the null
model (with N=9 per group). The red
regions indicate the part of the distribu-
tion in which less than 5% of observa-
tions should fall.

Figure 6.6 captures the logic of NHST: if the observed data fall in the
region that has a probability of less than .05 under the null model, then
we reject the null. So then when we observe some particular treatment
effect ̂𝛽 in a single (real) instance of our experiment, we can compute
the probability of these data or any data more extreme than ours under
the null model.6 This probability is our 𝑝-value, and if it is small, it
gives us license to conclude that the null is false.
As we saw before, the larger the sample size, the smaller the standard
error. That’s true for the null model too! Figure 6.7 shows the expected
null distribution for a bigger experiment.
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Figure 6.7: Example distribution of
treatment effects under the null model
for a larger experiment.

The more participants in the experiment, the tighter the null distribu-
tion becomes, and hence the smaller the region in which we should
expect a null treatment effect to fall. Because our expectation based on
the null becomes more precise, we will be able to reject the null based
on smaller treatment effects. In this type of hypothesis testing, as with
estimation, our goals matter. If we’re merely testing a hypothesis out of
curiosity, perhaps we don’t want to measure too many cups of tea. But
if we were designing the tea strategy for a major cafe chain, the stakes
would be higher; in that case, maybe we’d want to do a more extensive
experiment!

CODE

We can do a more systematic simulation of the null regions for different sample sizes by simply adding a parameter
to our simulation.

n_sims <- 10000
null_model_multi_n <- expand_grid(sim = 1:n_sims, n = c(12, 24, 48, 96)) |>
mutate(sim_data = map(n, \(n_i) make_tea_data(n_total = n_i, delta = 0))) |>
unnest(cols = sim_data)

null_model_summary_multi_n <- null_model_multi_n |>
group_by(n, sim, condition) |>
summarise(mean_rating = mean(rating)) |>
group_by(n, sim) |>
summarise(delta = mean_rating[condition == "milk first"] -

mean_rating[condition == "tea first"])

null_model_quantiles_multi_n <- null_model_summary_multi_n |>
group_by(n) |>
summarise(q_025 = quantile(delta, .025),

q_975 = quantile(delta, .975))

Here is the plotting code to produce a comparable figure to our illustration:

ggplot(null_model_summary_multi_n, aes(x = delta)) +
facet_wrap(vars(n), nrow = 1, labeller = label_both) +
geom_histogram(binwidth = .25) +
geom_vline(xintercept = 0, color = pal$grey, linetype = "dotted") +
geom_vline(data = null_model_quantiles_multi_n,

aes(xintercept = q_025), color = pal$red, linetype = "dotted") +
geom_vline(data = null_model_quantiles_multi_n,

aes(xintercept = q_975), color = pal$red, linetype = "dotted") +
xlim(-2.5, 2.5) +
labs(x = "Difference in rating", y = "Frequency")



6 INFERENCE 100

7 A historical note: what we describe
here as NHST is not what either Fisher’s
method or theNeyman-Pearsonmethod
that we introduce below. It’s what
Gigerenzer (1989) called “the silent hy-
brid solution,” in which the more con-
tinuous approach to 𝑝-values that Fisher
advocated for got rolled into the hypoth-
esis testing approach of Neyman and
Pearson. This hybrid – which neither
Fisher nor Neyman and Pearson would
have liked – is what we now mostly take
for granted as the received NHST ap-
proach.

Figure 6.8: The Bayes Factor (BF).

8 Sometimes people refer to the BF in fa-
vor of 𝐻1 as the 𝐵𝐹10 and the BF in fa-
vor of 𝐻0 as the 𝐵𝐹01. This notation is
a bit confusing because the first of these
looks like the number 10.

One last note: You might notice an interesting parallel between the
NHST paradigm and Popper’s falsificationist philosophy (introduced in
Chapter 2). In both cases, you never get to accept the actual hypothesis
of interest. The only thing you can do is observe evidence that is incon-
sistent with the null hypothesis. The added limitation of NHST is that
the only hypothesis you can falsify is the null!7

6.3 Making inferences
In the tea-tasting example we were just considering, we were trying
to make an inference from our sample to the broader population. In
particular, we were trying to test whether milk-first tea was rated as
better than tea-first tea. Our inferential goal was a clear, binary answer:
is milk-first tea better?
By defining a 𝑝-value, we got one procedure for giving this answer. If
𝑝 < .05, we reject the null. Then we can look at the direction of the
difference and, if it’s positive, declare thatmilk-first tea is “significantly”
better. Let’s compare this procedure to a different process that builds on
the Bayesian estimation ideas we described in the previous chapter. We
can then come back to examine NHST in light of that framework.

6.3.1 Bayes Factors
Bayes Factors are a method for quantifying the support for one hypoth-
esis over another, based on an observed dataset. They don’t tell you the
probability that a particular hypothesis is right, but they let you com-
pare two different ones.
Informally, we’ve now discussed two different distinct hypotheses
about the tea situation: our participants could have no tea discrim-
ination ability – leading to chance performance. We call this 𝐻0.
Or they could have some non-zero ability – leading to greater than
chance performance. We call this 𝐻1. The Bayes Factor is simply the
likelihood of the data (in the technical sense used above) under 𝐻1
vs. under 𝐻0 (Figure 6.8). The Bayes Factor is a ratio, so if it is greater
than 1, the data are more likely under 𝐻1 than they are under 𝐻0 – and
vice versa for values between 1 and 0. A BF of 3 means there is three
times as much evidence for 𝐻1 than 𝐻0, or equivalently 1/3 as much
evidence for 𝐻0 as 𝐻1.8
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9 Some like the guidelines provided by
Jeffreys (1961), which include categories
such as “barely worth mentioning” (1 >
BF > 3).

10 Two good ones beyond the McEl-
reath bookmentioned above are Gelman
et al. (1995), which is a bit more statisti-
cal, and Kruschke (2014), which is a bit
more focused on psychological data anal-
ysis. An in-prep web-book by Nicen-
boim et al. (https://vasishth.github.io/
bayescogsci/book/) also looks great.

CODE

Bayes Factors are delightfully easy to compute using the BayesFactor R package. All we do is feed in the two sets
of ratings to the ttestBF() function!

library(BayesFactor)

tea_bf <- ttestBF(x = filter(tea_data, condition == "milk first")$rating,
y = filter(tea_data, condition == "tea first")$rating,
paired = FALSE)

There are a couple of things to notice about the Bayes Factor. The first
is that, like a 𝑝-value, it is inherently a continuous measure. You can
artificially dichotomize decisions based on the Bayes Factor by declaring
a cutoff (say, BF > 3 or BF > 10), but there is no intrinsic threshold at
which you would say the evidence is “significant.” Some guidelines for
interpretation (from S. N. Goodman 1999) are shown in Table 6.1.9 On
the other hand, cutoffs like BF > 5 or 𝑝 < .05 are not very informative.
So although we provide this table to guide interpretation, we caution
that you should always report and interpret the actual Bayes Factor, not
whether it is above or below some cutoff.

Table 6.1: S. N. Goodman (1999) inter-
pretation guidelines for Bayes Factors.

BF range Interpretation
< 1 Negative (supports 𝐻0)
1–5 Weak
5–10 Moderate
10–20 Moderate to strong
20–100 Strong to very strong

The second thing to notice about the Bayes Factor is that it doesn’t de-
pend on our prior probability of 𝐻1 vs. 𝐻0. We might think of 𝐻1 as
very implausible. But the BF is independent of that prior belief. So that
means it’s a measure of how much the evidence should shift our beliefs
away from our prior. One nice way to think about this is that the Bayes
Factor computes how much our beliefs – whatever they are – should
be changed by the data (Morey and Rouder 2011).
In practice, the thing that is both tricky and good about Bayes Factors
is that you need to define an actual model of what 𝐻0 and 𝐻1 are. That
process involves making some assumptions explicit. We won’t go into
how to make these models here – this is a big topic that is covered ex-
tensively in books on Bayesian data analysis.10 The goal here is just to
give a general sense of what Bayes Factors are.

6.3.2 p-values
Now let’s turn back toNHST and the 𝑝-value. We already have a work-
ing definition of what a 𝑝-value is from our discussion above: it’s the
probability of the data (or any data that would be more extreme) under
the null hypothesis. How is this quantity related to either our Bayesian

https://vasishth.github.io/bayescogsci/book/
https://vasishth.github.io/bayescogsci/book/
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11 The likelihood – for both Bayesians
and frequentists – is the probability of
the data, just like the 𝑝-value. But un-
like the 𝑝-value, it doesn’t include the
probability of more extreme data as well.

12 𝑡-tests can also be used in cases where
one sample is being compared to some
baseline.

estimate or the BF? Well, the first thing to notice is that the 𝑝-value is
very close (but not identical) to the likelihood itself.11

Nextwe can use a simple statistical test, a 𝑡-test, to compute 𝑝-values for
our experiment. In case you haven’t encountered one, a 𝑡-test is a pro-
cedure for computing a 𝑝-value by comparing the distribution of two
variables using the null hypothesis that there is no difference between
them.12 The 𝑡-test uses the data to compute a test statistic whose dis-
tribution under the null hypothesis is known. Then the value of this
statistic can be converted to 𝑝-values for making an inference.

CODE

The standard t.test() function is built into R via the default stats package. Here we simplymake sure to specify
the variety of test we want by using the flags paired = FALSE and var.equal = TRUE (denoting the assumption
of equal variances).

tea_t <- t.test(x = filter(tea_data, condition == "milk first")$rating,
y = filter(tea_data, condition == "tea first")$rating,
paired = FALSE, var.equal = TRUE)

Imaginewe conduct a tea-tasting experimentwith 𝑁 = 48 and perform
a 𝑡-test on our experimental results. In this case, we see that the differ-
ence between the two groups is significant at 𝑝 < .05: 𝑡(46) = 2.86,
𝑝 = .006.

Table 6.2: Comparison of p-value and
BF for several different (randomly-
generated) tea-tasting scenarios.

N Effect size p-value BF
12 0.5 > .999 0.5
12 1.0 .076 1.4
12 1.5 .002 18.7
24 0.5 .858 0.4
24 1.0 .061 1.5
24 1.5 .009 5.6
48 0.5 .002 17.7
48 1.0 .033 2.0
48 1.5 < .001 133.6
96 0.5 .038 1.5
96 1.0 < .001 12218.2
96 1.5 < .001 3081.4

The expression 𝑡(46) = 2.86, 𝑝 = .006 is the standard way to report
of a 𝑡-test according to the American Psychological Association. The
first part of this report gives the 𝑡 value, qualified by the degrees of free-
dom for the test in parentheses. We won’t focus much on the idea of
degrees of freedom here, but for now it’s enough to know that this num-
ber quantifies the amount of information given by the data, in this case
48 datapoints minus the two means (one for each of the samples).
Let’s compare 𝑝 values and Bayes Factors (computed using the default
setup in the BayesFactorR package). In Table 6.2), the rows represent
simulated experiments with varying total numbers of participants (N
and varying average treatment effects. Both 𝑝 and BF go up with more
participants and larger effects. In general, BFs tend to be a bit more
conservative than 𝑝-values, such that 𝑝 < .05 can sometimes translate
to a BF of less than 3 (Benjamin et al. 2018). For example, take a look
at the row with 48 participants and an effect size of 1: the 𝑝 value is less
than .05, but the Bayes Factor is only 2.0.
The critical thing about 𝑝-values, though, is not just that they are a kind
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Figure 6.9: Standard decision matrix for
the Neyman-Pearson approach to statis-
tical inference.
13 A little bit of useful history here
is given in Cohen (1990), and we also
recommend Gigerenzer (1989) for a
broader perspective.
14 Unfortunately, 𝛽 is very commonly
used for regression coefficients – and for
that reason we’ve used it as our symbol
for causal effects. We’ll be using these
𝛽s in the next chapter as well. Those 𝛽s
are not to be confused with false nega-
tive rates. Sorry, this is just a place where
statisticians have used the same Greek
letter for two different things.
15 To make really rational decisions, you
could couple this chart to some kind of
utility function that assessed the costs of
different outcomes. For example, you
might think it’s worse to proceed with
an intervention that doesn’t work than to
stay with business as usual. In that case,
you’d assign a higher cost to a false posi-
tive and accordingly try to adopt a more
conservative criterion. We won’t cover
this kind of decision analysis here, but
Pratt et al. (1995) is a classic textbook
on statistical decision theory if you’re in-
terested.

of data likelihoods. It is that they are used in a specific inferential procedure.
The logic ofNHST is that wemake a binary decision about the presence
of an effect. If 𝑝 < .05, the null hypothesis is rejected; otherwise not.
As Fisher (1949) wrote,

It should be noted that the null hypothesis is never proved
or established, but is possibly disproved, in the course of
experimentation. Every experiment may be said to exist
only in order to give the facts a chance of disproving the
null hypothesis. (p. 19)

The main problem with 𝑝-values from a scientific perspective is that
researchers are usually interested in not just rejecting the null hypothesis
but also in the evidence for the alternative (the one we are interested in).
The Bayes Factor is one approach to quantifying positive evidence for
the alternative hypothesis in a Bayesian framework. This issue with the
Fisher approach to 𝑝-values has been known for a long time, though,
and so there is an alternative frequentist approach as well.

6.3.3 The Neyman-Pearson approach
One way to “patch” NHST is to introduce a decision-theoretic view,
shown in Figure 6.9.13 On this view, called the Neyman-Pearson view,
there is a real 𝐻1, albeit one that is not specified. Then the true state of
the world could be that 𝐻0 is true or 𝐻1 is true. The 𝑝 < .05 criterion
is the threshold at which we are willing to reject the null, and so this
constitutes our false positive rate 𝛼. But we also need to define a false
negative rate, which is conventionally called 𝛽.14

Setting these rates is a decision problem: If you are too conservative in
your criteria for the intervention having an effect, then you risk a false
negative, where you incorrectly conclude that it doesn’t work. And if
you’re too liberal in your assessment of the evidence, then you risk a
false positive.15 In practice, however, people usually leave 𝛼 at .05 and
try to control the false negative rate by increasing their sample size.
As we saw in Figure 6.6, the larger the sample, the better your chance
of rejecting the null for any given non-null effect. But these chances
will depend also on the effect size you are estimating. This formula-
tion gives rise to the idea of classical power analysis, which we cover in
Chapter 10. Most folks who defend binary inference are interested in
using the Neyman-Pearson approach. In our view, this approach has
its place (it’s especially useful for power analysis) but it still suffers from
the substantial issues that plague all binary inference techniques.
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 DEPTH

Nonparametric resampling under the null
Hypothesis testing requires knowing the null distribution. In the examples above, it was easy to use statistical theory
to work out the null distribution using knowledge of the binomial or normal distribution. But sometimes we don’t
know what the null distribution would look like. What if the ratings data from our tea-tasting experiment was
very skewed, such that there were many low ratings and a few very high ratings (as in Figure 6.10)?

Figure 6.10: A small tea-tasting experiment with a skewed distribution of ratings.

With skewed data like this, we couldn’t proceed with a 𝑡-test in good conscience because, with only 𝑛 = 18, we
can’t necessarily trust that the Central Limit Theorem has “kicked in” sufficiently for the test to work despite the
skewness. Put another way, we can’t be sure that the null distribution is normal (Gaussian) in this case.
An alternative way to approximate a null distribution is through nonparametric resampling. Resamplingmeans that
we’re going to draw new samples from our existing sample, and nonparametric means that we will do this in a way
that obviates assumptions about the shape of the null distribution – in contrast to parametric approaches that do
rely on such assumptions). These techniques are sometimes called “bootstrapping” techniques.
The idea is, if the treatment truly had no effect on the outcome, then the observations would be exchangeable
between the treatment and control groups. That is, therewould not be systematic differences between the treatment
and control groups. This property may or may not be true in our observed sample (after all, that’s why we’re doing
a hypothesis test in the first place), but we can draw new samples from our existing sample in a manner that forces
exchangability.
To perform this kind of test with our tea-tasting data, we would randomly shuffle the ratings in our dataset while
leaving the condition assignments fixed. If we did this thousands of times and computed the treatment effect in each
case, the result would be a null distribution: what we might expect the treatment effect to look like if there was no
condition effect. In essence we’re using a simulated version of “random assignment” here to break the dependency
between the condition manipulation and the observed data.
We can then compare our actual treatment effect to this nonparametric null distribution. If the actual treatment
was smaller than the 2.5th percentile or larger than the 97.5th percentile in the null distribution, we would reject
the null with 𝑝 < .05, just the same as if we had used a 𝑡-test.
Resampling-based tests are extremely useful in a wide variety of cases. They can sometimes be less powerful than
parametric approaches and they almost always require more computation, but their versatility makes them a great
generic tool for data analysis.
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16 The only thing that is different is the
idea that they are the likelihood of the
observed data or any more extreme.

17 Of course, weighing these two against
one another brings you back to the Bayes
Factor.

6.4 Inference and its discontents
In earlier sections of this chapter, we reviewed NHST and Bayesian ap-
proaches to inference. Now it’s time to step back and think about some
of the ways that inference practices – especially those related toNHST–
have been problematic for psychology research. We’ll begin with some
issues surrounding 𝑝-values and then give a specific accident report re-
lated to the process of “𝑝-hacking” and some general philosophical dis-
cussion of how statistical testing relates to human reasoning.

6.4.1 Problems with the interpretation of p-values
𝑝-values are basically likelihoods, in the sense we introduced in the pre-
vious chapter.16 They are the likelihood of the data under the null
hypothesis! This likelihood is a critical number to know – for comput-
ing the Bayes Factor among other reasons. But it doesn’t tell us a lot of
things that we might like to know!
For example, 𝑝-values don’t tell us the probability of the data under a
specific alternative hypothesis that wemight be interested in – that’s the
posterior probability 𝑝(𝐻1|data). When our tea-tasting 𝑡-test yielded
𝑡(46) = 2.86, 𝑝 = .006, that 𝑝 is not the probability of the null hypoth-
esis being true! And it’s definitely not the probability of milk-first tea
being better.
What can you conclude when 𝑝 > .05? According to the classical logic
of NHST, the answer is “nothing”! A failure to reject the null hypoth-
esis doesn’t give you any additional evidence for the null. Even if the
probability of the data (or some more extreme data) under 𝐻0 is high,
their probability might be just as high or higher under 𝐻1.17 But many
practicing researchers make this mistake. Aczel et al. (2018) coded a
sample of articles from 2015 and found that 72% of negative statements
were inconsistent with the logic of their statistical paradigm of choice
– most were cases where researchers said that an effect was not present
when they had simply failed to reject the null.
These are not the only issues with 𝑝-values. In fact, people have so
much trouble understanding what 𝑝-values do say that there are whole
articles written about these misconceptions. Table 6.3 shows a set of
misconceptions documented and refuted by S. N. Goodman (2008).
Let’s take a look at just a few. Misconception 1 is that, if 𝑝 = .05, the
null has a 5% chance of being true. This misconception is a result of
confusing 𝑝(𝐻0|data) (the posterior) and 𝑝(data|𝐻0) (the likelihood –
also known as the 𝑝-value). Misconception 2 – that 𝑝 > .05 allows us to
accept the null – also stems from this reversal of posterior and likelihood.
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18 The simplest and most versatile
one, the Bonferroni correction, just di-
vides .05 (or technically, whatever your
threshold is) by the number of compar-
isons you are making. Using that correc-
tion, if you do 20 null experiments, you
would have a 3% chance of a false posi-
tive.
19 This issue is especially problematic
with 𝑝-values because they are so often
presented as an independent set of tests,
but the problemofmultiple comparisons
comes up when you compute a lot of in-
dependent Bayes Factors as well. “Pos-
terior hacking” via selective reporting
of Bayes Factors is perfectly possible (Si-
monsohn 2014).

And misconception 3 is a misinterpretation of the 𝑝-value as an effect
size (which we learned about in the last chapter): a large effect is likely
to be clinically important, but with a large enough sample size, you can
get a small 𝑝-value even for a very small effect. We won’t go through
all the misconceptions here, but we encourage you to challenge yourself
to work through them (as in the exercise below).
Table 6.3: A “dirty dozen” 𝑝-value misconceptions. Adapted from S. N. Goodman
(2008).

Misconception
1 “If 𝑝 = .05, the null hypothesis has only a 5% chance of being true.”
2 “A nonsignificant difference (e.g., 𝑝 ≥ .05) means there is no difference between

groups.”
3 “A statistically significant finding is clinically important.”
4 “Studies with 𝑝-values on opposite sides of .05 are conflicting.”
5 “Studies with the same 𝑝-value provide the same evidence against the null

hypothesis.”
6 “𝑝 = .05 means that we have observed data that would occur only 5% of the time

under the null hypothesis.”
7 “𝑝 = .05 and 𝑝 ≤ .05 mean the same thing.”
8 “𝑝-values are properly written as inequalities (e.g., ‘𝑝 ≤ .02’ when 𝑝 = .015)”
9 “𝑝 = .05 means that if you reject the null hypothesis, the probability of a false

positive error is only 5%.”
10 “With a 𝑝 = .05 threshold for significance, the chance of a false positive error will

be 5%.”
11 “You should use a one-sided 𝑝-value when you don’t care about a result in one

direction, or a difference in that direction is impossible.”
12 “A scientific conclusion or treatment policy should be based on whether or not

the 𝑝 value is significant.”

Beyond these misconceptions, there’s another problem. The 𝑝-value is
a probability of a certain set of events happening (corresponding to the
observed data or any “more extreme” data, that is to say, data further
from the null). Since 𝑝-values are probabilities, we can combine them
together across different events. If we run a “null experiment” – an ex-
periment where the true effect is zero – the probability of a dataset with
𝑝 < .05 is of course .05. But if we run two such experiments, we can
get 𝑝 < .05 with probability 0.1. By the time we run 20 experiments,
we have an 0.64 chance of getting a positive result.
It would obviously be a major mistake to run 20 experiments and then
report only the positive ones (which, by design, are false positives) as
though these still were “statistically significant.” The same thing applies
to doing 20 different statistical tests within a single experiment. There
are many statistical corrections that can be made to adjust for this prob-
lem, which is known as the problem of multiple comparisons.18 But
the the broader issue is one of transparency: unless you know what the
appropriate set of experiments or tests is, it’s not possible to implement
one of these corrections!19
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 ACCIDENT REPORT

Do extraordinary claims require extraordinary evidence?
In a blockbuster paper that may have inadvertently kicked off the replication crisis, Bem (2011) presented nine ex-
periments he claimed provided evidence for precognition – that participants somehow had foreknowledge of the
future. In the first of these experiments, Bem showed each of a group of 100 undergraduates 36 two-alternative
forced choice trials in which they had to guess which of two locations on a screen would reveal a picture imme-
diately before the picture was revealed. By chance, participants should choose the correct side 50% of the time
of course. Bem found that, specifically for erotic pictures, participants’ guesses were 53.1% correct. This rate of
guessing was unexpected under the null hypothesis of chance guessing (𝑝 = .01). Eight other studies with a total of
more than 1,000 participants yielded apparently supportive evidence, with participants appearing to show a variety
of psychological effects even before the stimuli were shown!
Based on this evidence, should we conclude that precognition exists? Probably not. Wagenmakers et al. (2011)
presented a critique of Bem’s findings, arguing that 1) Bem’s experiments were exploratory (not pre-registered)
in nature, 2) that Bem’s conclusions were a priori unlikely, and 3) that the level of statistical evidence from his
experiments was quite low. We find each of these arguments alone compelling; together they present a knockdown
case against Bem’s interpretation.
First, we’ve already discussed the need to be skeptical about situations where experimenters have the opportunity
for analytic flexibility in their choice of measures, manipulations, samples, and analyses. Flexibility leads to the
possibility of cherry-picking those set of decisions from the “garden of forking paths” that lead to a positive outcome
for the researcher’s favored hypothesis (for more details, see Chapter 11). And there is plenty of flexibility on
display even in Experiment 1 of Bem’s paper. Although there were 100 participants in the study, they may have
been combined post hoc from two distinct samples of 40 and 60, each of which saw different conditions. The 40
made guesses about the location of erotic, negative, and neutral pictures; the 60 saw erotic, positive non-romantic,
and positive romantic pictures. The means of each of these conditions was presumably tested against chance (at
least 6 comparisons, for a false positive rate of 0.26). Had positive romantic pictures been found significant, Bem
certainly could have interpreted this finding the same way he interpreted the erotic ones.
Second, as we discussed, a 𝑝-value close to .05 does not necessarily provide strong evidence against the null hypoth-
esis. Wagenmakers et al. computed the Bayes Factor for each of experiments in Bem’s paper and found that, in
many cases, the amount of evidence for 𝐻1 was quite modest under a default Bayesian 𝑡-test. Experiment 1 was
no exception: the BF was 1.64, giving only “anecdotal” support for the hypothesis of some non-zero effect, even
before the multiple-comparisons problem mentioned above.
Finally, since precognition is not supported by any prior compelling scientific evidence (despite many attempts to
obtain such evidence) and defies well-established physical laws, perhaps we should assign a low prior probability
to Bem’s 𝐻1, a non-zero precognition effect. Taking a strong Bayesian position, Wagenmakers et al. suggest that
we might do well to adopt a prior reflecting how unlikely precognition is, say 𝑝(𝐻1) = 10−20. And if we adopt
this prior, even a very well-designed, highly informative experiment (with a Bayes factor conveying substantial or
even decisive evidence) would still lead to a very low posterior probability of precognition.
Wagenmakers et al. concluded that, rather than supporting precognition, the conclusion from Bem’s paper should
be psychologists should revise how they think about analyzing their data (and avoid 𝑝-hacking)!
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20 This is really a very rough description.
If you’re interested in learning more
about this philosophical background, we
recommend the Stanford Encyclopedia
of Philosophy entry, “Interpretations
of Probability” (https://plato.stanford.
edu/entries/probability-interpret/).

21 Cohen (1994) is a great treatment of
this issue.

6.4.1 Philosophical (and empirical) views of probability
Up until now we’ve presented Bayesian and frequentist tools as two dif-
ferent sets of computations. But in fact, these different tools derive from
fundamentally different philosophical perspectives on what a probabil-
ity even is. Very roughly, frequentist approaches tend to believe that
probabilities quantify the long-run frequencies of certain events. So, if
we say that some outcome of an event has probability .5, we’re saying
that if that event happened thousands of times, the long run frequency of
the outcome would be 50% of the total events. In contrast, the Bayesian
viewpoint doesn’t depend on this sense that events could be exactly re-
peated. Instead, the subjective Bayesian interpretation of probability is
that it quantifies a person’s degree of belief in a particular outcome.20

You don’t have to take sides in this deep philosophical debate about
what probability is. But it’s helpful to know that people actually seem
to reason about the world in ways that are well described by the subjec-
tive Bayesian view of probability. Recent cognitive science research has
made a lot of headway in describing reasoning as a process of Bayesian
inference where probabilities describe degrees of belief in different hy-
potheses (for a textbook review of this approach, see N. D. Goodman,
Tenenbaum, and Contributors 2016). These hypotheses in turn are a lot
like the theories we described in Chapter 2: they describe the relation-
ships between different abstract entities (Tenenbaum et al. 2011). You
might think that scientists are different from lay-people in this regard,
but one of the striking findings from research on probabilistic reasoning
and judgment is that expertise doesn’t matter that much. Statistically-
trained scientists – and even statisticians – make many of the same rea-
soning mistakes as their un-trained students (Kahneman and Tversky
1979). Even children seem to reason intuitively in a way that looks a bit
like Bayesian inference (Gopnik 2012).
These cognitive science findings help to explain some of the problems
that people (scientists included) have in reasoning about 𝑝-values. If you
are an intuitively Bayesian reasoner, the quantity that you’re probably
tracking is how much you believe in your hypothesis (its posterior prob-
ability). So, many people treat the 𝑝-value as the posterior probability
of the null hypothesis.21 That’s exactly what fallacy #1 in Table 6.3
states – “If p = .05, the null hypothesis has only a 5% chance of being
true.” But this equivalence is incorrect! Written in math, 𝑝(data|𝐻0)
(the likelihood that lets us compute the p-value) is not the same thing
as 𝑝(𝐻0|data) (the posterior that we want). Pulling from our accident
report above, even if the probability of the observed ESP data given the null
hypothesis is low, that doesn’t mean that the probability of ESP is high.

https://plato.stanford.edu/entries/probability-interpret/
https://plato.stanford.edu/entries/probability-interpret/
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22 More generally, this pattern is prob-
ably an example of Goodhart’s law,
which states that when a measure be-
comes a target, it ceases to be a good
measure (Strathern 1997). Once the out-
comes of statistical inference procedures
become targets for publication, they are
subject to selection biases – 𝑝-hacking,
for example – that make them less mean-
ingful.

6.4.2 What framework to use?
The problem with binary inferences is that they enable behaviors that
can introduce bias into the scientific ecosystem. By the logic of statis-
tical significance, either an experiment “worked” or it didn’t. Because
everyone would usually rather have an experiment that worked than
one that didn’t, inference criteria like 𝑝-values often become a target
for selection, as we discussed in Chapter 3.22

If you want to quantify evidence for or against a hypothesis, it’s worth
considering whether Bayes Factors address your question better than 𝑝-
values. In practice, 𝑝-values are hard to understand and many people
misuse them – though to be fair, BFs are misused plenty too. These
issuesmay be rooted in basic facts about howhuman beings reason about
probability.
Despite the reasons to be worried about 𝑝-values, for many practicing
scientists (at least at time of writing) there is no one right answer about
whether to use them or not. Even if we’d like to be Bayesian all the
time, there are a number of obstacles. First, though new computational
tools make fitting Bayesian models and extracting Bayes Factors much
easier than before, it’s still on average quite a bit harder to fit a Bayesian
model than it is a frequentist one. Second, because Bayesian analyses are
less familiar, it may be an uphill battle to convince advisors, reviewers,
and funders to use them.
As a group of authors, some of us are more Bayesian than frequentist,
while others are more frequentist than Bayesian – but all of us recog-
nize the need to move between statistical paradigms depending on the
problem we’re working on. Furthermore, a lot of the time we’re not
so worried about which paradigm we’re using. The paradigms are at
their most divergent when making binary inferences, and they often
look much more similar when they are used in the context of quantify-
ing measurement precision.

6.5 Computing precision
Our last section presented an argument against using 𝑝-values for mak-
ing dichotomous inferences. But we still want to move from what we
know about our own limited sample to some inference about the pop-
ulation. How should we do this?
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23 This type of CI is called a “Wald”
confidence interval.

24 In case you don’t have enough tea
to do the experiment 100 times to con-
firm this, you can do it virtually using
this nice simulation tool: https://istats.
shinyapps.io/ExploreCoverage.

6.5.1 Confidence intervals
One alternative to binary hypothesis testing is to ask about the precision
of our estiamates, in particular how similar an estimate from a particu-
lar sample is to the population parameter of interest. For example, how
close is our tea-tasting effect estimate to the true effect in the popu-
lation? We don’t know what the true effect is, but our knowledge of
sampling distributions lets us make some guesses about how precise our
estimate is.
The confidence interval is a convenient frequentist way to summarize
the variability of the sampling distribution – and hence how precise
our point estimate is. The confidence interval represents the range of
possible values for the parameter of interest that are plausible given the
data. More formally, a 95% confidence interval for some estimate (call
it ̂𝛽, as in our example) is defined as a range of possible values for 𝛽
such that, if we did repeated sampling, 95% of the intervals generated
by those samples would contain the true parameter, 𝛽.
Confidence intervals are constructed by estimating the middle 95% of
the sampling distribution of ̂𝛽. Because of our hero, the Central Limit
Theorem, we can treat the sampling distribution as normal for reason-
ably large samples. Given this, it’s common to construct a 95% confi-
dence intervals ̂𝛽 ± 1.96 𝑆𝐸.23 If we were to conduct the experiment
100 times and calculate a confidence interval each time, we should ex-
pect 95 of the intervals to contain the true 𝛽, whereas we would expect
the remaining 5 to not contain 𝛽.24

Confidence intervals are like betting on the inferences drawn from your
sample. The sample you drew is like one pull of a slot machine that will
pay off (i.e., have the confidence interval contain the true parameter)
95% of the time. Put more concisely: 95% of 95% confidence intervals
contain the true value of the population parameter.

Figure 6.11: Confidence intervals on
each of the two condition estimates, as
well as on the difference between condi-
tions.

https://istats.shinyapps.io/ExploreCoverage
https://istats.shinyapps.io/ExploreCoverage
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CODE

Computing confidence intervals analytically is pretty easy. Here we first compute the standard error for the differ-
ence between conditions. The only tricky bit here is that we need to compute a pooled standard deviation.

tea_ratings <- filter(tea_data, condition == "tea first")$rating
milk_ratings <- filter(tea_data, condition == "milk first")$rating

n_tea <- length(tea_ratings)
n_milk <- length(milk_ratings)
sd_tea <- sd(tea_ratings)
sd_milk <- sd(milk_ratings)

tea_sd_pooled <- sqrt(((n_tea - 1) * sd_tea ^ 2 + (n_milk - 1) * sd_milk ^ 2) /
(n_tea + n_milk - 2))

tea_se <- tea_sd_pooled * sqrt((1 / n_tea) + (1 / n_milk))

Once we have the standard error, we can get the estimated difference between conditions and compute the confi-
dence intervals by multiplying the standard error by 1.96.

delta_hat <- mean(milk_ratings) - mean(tea_ratings)
tea_ci_lower <- delta_hat - tea_se * qnorm(0.975)
tea_ci_upper <- delta_hat + tea_se * qnorm(0.975)

For visualization purposes, we can show the confidence intervals on
individual estimates (left side of Figure 6.11). These tell us about the
precision of our estimates of each quantity relative to the population
estimate. But we’ve been talking primarily about the CI on the treat-
ment effect ̂𝛽 (right side of Figure 6.11). This CI allows us to make
an inference about whether or not it overlaps with zero – which is ac-
tually equivalent in this case to whether or not the 𝑡-test is statistically
significant.

6.5.2 Confidence in confidence intervals?
Confidence intervals are often misinterpreted by students and re-
searchers alike (Hoekstra et al. 2014). Imagine a researcher conducts
an experiment and reports that “the 95% confidence interval for the
mean ranges from 0.1 to 0.4.” All of the statements in Table 6.4, though
tempting to make about this situation, are technically false.
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25 In contrast, Bayesians think of param-
eters themselves as variable rather than
fixed.

26 They can diverge sharply in caseswith
less data or stronger priors (Morey et al.
2016), but in our experience this is rela-
tively rare.

Table 6.4: Confidence interval misconceptions for a confidence interval [0.1,0.4].
Adapted from Hoekstra et al. (2014).

Misconception
1 “The probability that the true mean is greater than 0 is at least 95%.”,
2 “The probability that the true mean equals 0 is smaller than 5%.”,
3 “The ‘null hypothesis’ that the true mean equals 0 is likely to be incorrect.”,
4 “There is a 95% probability that the true mean lies between 0.1 and 0.4.”,
5 “We can be 95% confident that the true mean lies between 0.1 and 0.4.”,
6 “If we were to repeat the experiment over and over, then 95% of the time the

true mean falls between 0.1 and 0.4.”

The problemwith all of these statements is that, in the frequentist frame-
work, there is only one true value of the population parameter, and the
variability captured in confidence intervals is about the samples, not the
parameter itself.25 For this reason, we can’t make any statements about
the probability of the value of the parameter or of our confidence in spe-
cific numbers. To reiterate, what we can say is: if we were to repeat the
procedure of conducting the experiment and calculating a confidence
interval many times, in the long run, 95% of those confidence intervals
would contain the true parameter.
TheBayesian analog to a confidence interval is a credible interval. Recall
that for Bayesians, parameters themselves are considered probabilistic
(i.e., subject to random variation), not fixed. A 95% credible interval
for an estimate, ̂𝛽, represents a range of possible values for 𝛽 such that
there is a 95% probability that 𝛽 falls inside the interval. Because we are
now wearing our Bayesian hats, we are “allowed” to talk about 𝛽 as if
it were probabilistic rather than fixed. In practice, credible intervals are
constructed by finding the posterior distribution of 𝛽, as in Chapter 5,
and then taking the middle 95%, for example.
Credible intervals are nice because they don’t give rise to many of the
inference fallacies surrounding confidence intervals. They actually do
represent our beliefs about where 𝛽 is likely to be, for example. Despite
the technical differences between credible intervals and confidence in-
tervals, in practice – with larger sample sizes and weaker priors – they
turn out to be quite similar to one another in many cases.26

6.6 Chapter summary: Inference
Inference tools help youmove from characteristics of the sample to char-
acteristics of the population. This move is a critical part of generaliza-
tion from research data. But we hope we’ve convinced you that infer-
ence doesn’t have to mean making a binary decision about the presence
or absence of an effect. A strategy that seeks to estimate an effect and
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its associated precision is often much more helpful as a building block
for theory. As we move towards estimating causal effects in more com-
plex experimental designs, the process will require more sophisticated
models. Towards that goal, the next chapter provides some guidance
for how to build such models.

DISCUSSION QUESTIONS

1. Can you write the definition of a 𝑝-value and a Bayes Factor without looking them up? Try this out – what
parts of the definitions did you get wrong?

2. Take three of Goodman’s (2008) “dirty dozen” in Table 6.3) and write a description of why each is a miscon-
ception. (These can be checked against the original article, which gives a nice discussion of each.

READINGS

– Many of the concepts described here are illustrated beautifully via interactive visualizations. We recommend
https://seeing-theory.brown.edu/ for a broad overview of statistical concepts and https://rpsychologist.com/viz
for a number of interactives that specifically illustrate concepts discussed in this chapter and the previous one,
including 𝑝-values, effect sizes, maximum likelihood estimation, confidence intervals, and Bayesian inference.

– A fun, polemical critique of NHST: Cohen, J. (1994). The earth is round (p < .05). American Psychologist, 49,
997–1003. https://doi.org/10.1037/0003-066X.49.12.997.

– A nice introduction to Bayesian data analysis: Kruschke, J. K., & Liddell, T. M. (2018). Bayesian data analysis for
newcomers. Psychonomic bulletin & review, 25(1), 155-177. https://doi.org/10.3758/s13423-017-1272-1.
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7 MODELS

🍏 LEARNING GOALS

– Articulate a strategy for estimating experimental effects using statistical models
– Build intuitions about how classical statistical tests relate to linear regression models
– Explore variations of the linear model, including generalized linear models and mixed effects models
– Reason about tradeoffs and strategies for model specification, including the use of control variables

In the previous two chapters, we introduced concepts surrounding es-
timation of an experimental effect and inference about its relationship
to the effect in the population. The tools we introduced there are for
fairly specific research questions, and so are limited in their applicabil-
ity. Once you get beyond the world of two-condition experiments in
which each participant contributes one data point from a continuous
measure, the simple 𝑡-test is not sufficient.
In some statistics textbooks, the next step would be to present a whole
host of other statistical tests that are designed for other special cases. We
could even show a decision-tree: you have repeatedmeasures? Use Test
X! Or categorical data? Use Text Y! Or three conditions? Use Test Z!
But this isn’t a statistics book, and even if it were, we don’t advocate
that approach. The idea of finding a specific narrowly-tailored test for
your situation is part and parcel of the dichotomous NHST approach
that we tried to talk you out of in the last chapter. If all you want is
your 𝑝 < .05, then it makes sense to look up the test that can allow you
to compute a 𝑝 value in your specific case. But we prefer an approach
that is more focused on getting a good estimate of the magnitude of the
causal effect.
In this chapter, we begin to explore how to select an appropriate statis-
tical model to clearly and flexibly reason about these effects. A statistical
model is a way of writing down a set of assumptions about how partic-
ular data are generated, the data generating process. Statistical models
are the bread and butter tools for estimating particular parameters of
interest from empirical data – like the magnitude of a causal effect as-
sociated with an experimental manipulation. They can also quantify
MEASUREMENT PRECISION.
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1 We won’t explore the connection to
DAGs and Bayesian models here, but
one way to think of this model build-
ing is as creating a causal theory of the
experiment. This approach, which is
advocated by McElreath (2018), creates
powerful connections between the ideas
about theory we presented in Chapters
1 and 2 and the ideas about models here.
If this sounds intriguing, we encourage
you to go down the rabbit hole!
2 The name regression originally comes
from Galton (1877)’s work on heredity.
He was looking at the relationship be-
tween the heights of parents and chil-
dren. He found that children’s heights
regressed, and he did so by creating a re-
gression model. Now we use the term
“regression” to mean any model of this
form.

For example, suppose you watch someone tossing a coin and observe a
sequence of heads and tails. A simple statistical modelmight assume that
the observed data are generated via the flip of a weighted coin. From the
perspective of the last two chapters, we could estimate a standard error
for the estimated proportion of flips that are heads (e.g., for 6 heads out
of 8 flips, we have ̂𝑝 = 0.75 ± 0.17), or we could compare the observed
proportion against a null hypothesis. From a model-based perspective,
however, we instead begin by thinking about where the data came from:
we might assume the coin being flipped has some weight (a latent, or
unobservable, parameter of the data generating process), and our goal
is to determine the most likely value of that weight given the observed
data. This single unified model can then also be used to make inferences
about whether the coin’s weight differs from some null model (a fair
coin, perhaps), or to predict future flips.
This example sounds a lot like the kinds of simple inferential tests we
talked about in the previous chapter; not very “model-y.” But things
get more interesting when there aremultiple parameters to be estimated,
as in many real-world experiments. In the tea-tasting scenario we’ve
belabored over the past two chapters, a real experiment might involve
multiple people tasting different types of tea in different orders, all with
some cups randomly assigned to be milk-first or tea-first. What we’ll
learn to do in this chapter is to make a model of this situation that allows
us to reason about the magnitude of the milk-order effect while also
estimating variation due to different people, orders, and tea types. This
is the advantage of using models: once you are able to reason about
estimation and inference inmodel-based terms, youwill be set free from
long decision trees andwill be able to flexiblymake the assumptions that
make sense for your data.1

We’ll begin by discussing the ubiquitous framework for building statisti-
cal models, linear regression.2 We will then build connections between
regression and the 𝑡-test. This section will discuss how to add covariates
to regression models, and when linear regression does and doesn’t work.
In the following section, we’ll discuss the generalized linear model, an
innovation that allows us to make models of a broader range of data
types, including logistic regression. We’ll then briefly introducemixed
models, which allow us to model clustering in our datasets (such as clus-
ters of observations from a single individual or single stimulus item).
We’ll end with some opinionated practical advice on model building.
If you’re interested in building up intuitions about statistical model
building, then we recommend reading this chapter all the way through.
On the other hand, if you are already engaged in data analysis and
want to see an example, we suggest that you skip to the last section,
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3 The reverse is not true – not every
predictor or covariate is an independent
variable! One of the tricky things about
relating regression models to causal hy-
potheses is that, just because something
is on the right side of a regression equa-
tion, that doesn’t mean it’s a causal ma-
nipulation. And of course, just because
you’ve got an estimate of some predic-
tor in a regression, that doesn’t mean the
estimate tells you about the magnitude
of the causal effect. It could, but it also
might not!
4 Here’s a quick reminder that “model”
here is a way of saying “set of assump-
tions about the data generating proce-
dure.” So saying that some equation is
a “model” is the same as saying that we
think this is where the data came from.
We can “turn the crank” – generate data
through the process that’s specified in
those equations, e.g., pulling numbers
from a normal distribution with mean
𝜃T + 𝛽 and standard deviation 𝜎. In
essence, we’re committing to the idea
that this process will give us data that are
substantively similar to the ones we have
already.
5 Using 0 and 1 is known as dummy
coding, and allows us to interpret the
parameter as the difference of the treat-
ment group (tea-first) from the baseline
(milk-first). There are many other ways
to code categorical variables, with other
interpretations. As a practical tip, be
careful to check how your variables are
coded before reporting anything!

Table 7.1: Example tea tasting data.

id condition X rating (Y)
1 milk first 0 6
2 milk first 0 4
3 milk first 0 5
4 tea first 1 1
5 tea first 1 3
6 tea first 1 5

where we give some opinionated practical advice on model building
and provide a worked example of fitting a mixed effects model and
interpreting it in context.

7.1 Regression models
There are many types of statistical models, but this chapter will focus
primarily on regression, a broad and extremely flexible class of mod-
els. A regression model relates a dependent variable to one or more
independent variables. Dependent variables are sometimes called out-
come variables, and independent variables are sometimes called predic-
tor variables, covariates, or features.3 We will see that many common
statistical estimators (like the sample mean) and methods of inference
(like the 𝑡-test) are actually simple regression models. Understanding
this point will help you see many statistical methods as special cases of
the same underlying framework, rather than as unrelated, ad hoc tests.

7.1.1 Regression for estimating a simple treatment effect
Let’s start with one of these special cases, namely estimating a treatment
effect, 𝛽, in a two-group design. In Chapter 5, we solved this exact
challenge for the tea-tasting experiment. We applied a classical model
in which the milk-first ratings are assumed to be normally distributed
with mean 𝜃M = 𝜃T + 𝛽 and standard deviation 𝜎.4

Let’s now write that model as a regression model, that is, as a model that
predicts each participant’s tea rating, 𝑌𝑖, given that participant’s treat-
ment assignment, 𝑋𝑖. 𝑋𝑖 = 0 represents the control (milk-first) group
and 𝑋𝑖 = 1 represents the treatment (tea-first) group.5 Here, 𝑌𝑖 is the
dependent variable, and 𝑋𝑖 is the independent variable. The subscripts
𝑖 index the participants. To make this concrete, you can see some sam-
ple tea-tasting data (the first three observations from each condition)
below (Table 7.1), with the index 𝑖, the condition and its predictor 𝑋𝑖,
and the rating 𝑌 .
Let’s write this model more formally as a linear regression of Y on X.
Conventionally, regression models are written with “𝛽’ ’ symbols for all
parameters, so we’ll now use 𝛽0 = 𝜃𝑀 for the mean in the milk-first
group and 𝛽1 = 𝜃𝑇 −𝜃𝑀 as the average difference between the tea-first
and milk-first groups. This 𝛽 is a generalization of the one were using
to denote the causal effect above and in the previous two chapters.

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝜖𝑖
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6 Formally, we’d write 𝜖𝑖 ∼ 𝒩(0, 𝜎2).
The tilde means “is distributed as”, and
what follows is a normal distribution
with mean 0 and variance 𝜎2.

7 You may be wondering why so much
effort was put into building boutique so-
lutions for these special cases when a uni-
fied framework was available the whole
time. A partial answer is that the classical
infrastructure of statistics was developed
before computers were widespread, and
these special cases were chosen because
they were easy to work with “analyti-
cally” (meaning to work out all the math
by hand, using values from big numeri-
cal tables). Now that we have comput-
ers with more flexible algorithms, the
model-based perspective is more practi-
cal and accessible than it used to be.

The term 𝛽0 + 𝛽1𝑋𝑖 is called the linear predictor, and it describes the
expected value of an individual’s tea rating, 𝑌𝑖, given that participant’s
treatment group 𝑋𝑖 (the single independent variable in this model).
That is, for a participant in the control group (𝑋𝑖 = 0), the linear
predictor is just equal to 𝛽0, which is indeed the mean for the control
group that we specified above. On the other hand, for a participant in
the treatment group, the linear predictor is equal to 𝛽0 + 𝛽1, which
is the mean for the treatment group that we specified. In regression
jargon, 𝛽0 and 𝛽1 are regression coefficients, where 𝛽1 represents the
association of the independent variable 𝑋 with the outcome 𝑌 .
The term 𝜖𝑖 is the error term, referring to random variation of partici-
pants’ ratings around the group mean.6 Note that this is a very specific
kind of “error”; it does not include “error” due to bias, for example.
Instead, you can think of the error terms as capturing the “error” that
would be associated with predicting any given participant’s rating based
on just the linear predictor. If you predicted a control group partici-
pant’s rating as 𝛽0, that would be a good guess – but you still expect the
participant’s rating to deviate somewhat from 𝛽0 (i.e., due to variability
across participants beyond what is captured by their treatment groups).
In our regression model, the linear predictor and error terms together
say that participants’ ratings scatter randomly (in fact, normally) around
their group means with standard deviation 𝜎. And that is exactly the
same model we posited in Chapter 5.7

Now we have the model. But how do we estimate the regression co-
efficients 𝛽0 and 𝛽1? The usual method is called ordinary least squares
(OLS). Here’s the basic idea. For any given regression coefficient es-
timates ̂𝛽0 and ̂𝛽1, we would obtain different predicted values, 𝑌𝑖 =

̂𝛽0 + ̂𝛽1𝑋𝑖 for each participant. Some regression coefficient estimates
will yield better predictions than others. OLS estimation is designed to
find the values of the regression coefficients that optimize these predic-
tions, meaning that the predictions are as close as possible to participants’
true outcomes, 𝑌𝑖.

Figure 7.1: (left) Best-fitting regression
coefficients for the tea-tasting experi-
ment. (right) Much worse coefficients
for the same data. Dotted lines: resid-
uals. Circles: data points for individual
participants.
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8 OLS minimizes squared error loss, in
the sense that it will choose the regres-
sion coefficient estimates whose pre-
dictions minimize ∑𝑛

𝑖=1 (𝑌𝑖 − 𝑌𝑖)
2
,

where 𝑛 is the sample size. A wonderful
thing about OLS is that those optimal re-
gression coefficients (generically termed
�̂) turn out to have a very simple closed
form solution: �̂ = (X′X)−1X′y. We
are using more general notation here
that supports multiple independent
variables: �̂ is a vector, X is a matrix
of independent variables for each
subject, and y is a vector of participants’
outcomes. As more good news, the
standard error for �̂ has a similarly
simple closed form!

Figure 7.1 illustrates the tea tasting data for each condition (the dots)
along with the model predictions for each condition 𝛽0 and 𝛽0 + 𝛽1
(blue lines). The gap between each data point and the corresponding
predictions (the thing that OLS wants to minimize) is shown by the
dotted lines.8 These distances are sample estimates, called residuals, of
the true errors (𝜖𝑖. The left-hand plot shows the OLS coefficient values
– the ones that move the model’s predictions as close as possible to the
data points, in the sense of minimizing the total squared length of the
dashed lines. The right-hand plot shows a substantially worse set of
coefficient values.
You’ll notice that we aren’t talking much about 𝑝-values in this chapter.
Regression models can be used to produce 𝑝-values for specific coef-
ficients, representing inferences about the likelihood of the observed
data under some null hypothesis regarding the coefficients. You can
also compute Bayes Factors for specific regression coefficients, or use
Bayesian inference to fit these coefficients under some prior expecta-
tion about their distribution. We won’t talk much about this, or more
generally how to fit themodels we describe. As we said, we’re not going
to give a full treatment of all the relevant statistical topics. Instead we
want to help you begin thinking about making models of your data.

CODE

As it turns out, fitting an OLS regression model in R is extremely easy. The underlying function is lm(), which
stands for linear model. You can fit the model with a single call to this function with a “formula” as its argument.
Here’s the call:

mod <- lm(rating ~ condition, data = tea_data)

Formulas in R are a special kind of terse notation for regression equations where you write the outcome, ~ (dis-
tributed as), and the predictors. R assumes that you want an intercept by default, and there are also a number of
other handy defaults that make R formulas a nice easy way to specify relatively complex regression models, as we’ll
see below.
Once you’ve fit the model and assigned it to a variable, you can call summary() to see a summary of the parameters
of the model:

summary(mod)

You can also extract the coefficient values using coef(mod), and put them in a handy dataframe using tidy(mod)
from the broom package.
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9 The ability to estimate multiple coeffi-
cients at once is a huge strength of regres-
sion modeling, so much so that some-
times people use the label multiple re-
gression to denote that there ismore than
one predictor + coefficient pair.

7.1.2 Adding predictors
The regression model we just wrote down is the same model that under-
lies the 𝑡-test from Chapter 6. But the beauty of regression modeling
is that much more complex estimation problems can also be written as
regression models that extend the model we made above. For example,
we might want to add another predictor variable, such as the age of the
participant.9

Let’s add this new independent variable and a corresponding regression
coefficient to our model:

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖1 + 𝛽2𝑋𝑖2 + 𝜖𝑖

Now that we have multiple independent variables, we’ve labeled them
𝑋1 (treatment group) and 𝑋2 (age) for clarity.
To illustrate how to interpret the regression coefficients in this model,
let’s use the linear predictor to compare themodel’s predicted tea ratings
for two hypothetical participants who are both in the treatment group:
20-year-old Alice and 21-year old Bob. Alice’s linear predictor tells us
that her expected rating is 𝛽0 + 𝛽1 + 𝛽2 ⋅ 20. In contrast, Bob’s linear
predictor is 𝛽0 +𝛽1 +𝛽2 ⋅21. We could therefore calculate the expected
difference in ratings for 21-year-olds versus 20-year olds by subtracting
Alice’s linear predictor from Bob’s, yielding just 𝛽2.
We would get the same result if Alice and Bob were instead 50 and 51
years old, respectively. This equivalence illustrates a key point about
linear regression models in general:

The regression coefficient represents the expected differ-
ence in outcome when comparing any two participants
who differ by 1 unit of the relevant independent variable,
and who do not differ on any other independent variables
in the model.

Here, the coefficient compares participants who differ by 1 year of age.
In “Practical modeling considerations” below, we discuss whether and
when to “control for” additional variables (i.e., when to add them to
your model).

7.1.3 Interactions
In our running example, we now have two predictors: condition and
age. But what if the effect of condition varies depending on the age
of the participant? This situation would correspond to a case where
(say) older people were more sensitive to tea ordering, perhaps because
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10 We won’t go into this topic here,
but we do want to provide a pointer
to one of the most persistent challenges
that come up when you specify regres-
sion models with categorical predictors
– and especially their interactions: how
you “code” these categorical predictors.
Above we created a “dummy” variable
𝑋 that encoded milk-first tea as 0 and
tea-first tea as 1. Dummy variables are
very easy to think about, but in models
with interactions, they can cause some
problems. Because the interaction in
our example model is a product of the
dummy-coded condition variable and
age, the interaction term 𝛽3 is inter-
preted as the effect of age for the tea-first
condition (𝑋 = 1) and hence the effect
of age 𝛽2 is actually the effect of age for
the milk-first condition. The way to deal
with this issue is to use a different coding
system, such as contrast coding. Davis
(2010) gives a good tutorial on this tricky
topic.
11 There is a precise sense in which OLS
gives the very best predictions we could
ever get from any model that posits lin-
ear relationships between the indepen-
dent variables and the outcome. That is,
you can come up with any other linear,
unbiased model you want, and yet if the
assumptions of OLS are fulfilled, predic-
tions from OLS will always be less noisy
than those of your model. This is be-
cause of an elegant mathematical result
called the Gauss-Markov Theorem.

of their greater tea experience. We call this an interaction effect: the
effect of one predictor depends on the state of another.
Interaction effects are easily accommodated in ourmodeling framework.
We simply add a term to ourmodel that is the product of condition (𝑋1)
and age (𝑋2), and weight this product by another beta, which represents
the strength of this interaction:

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖1 + 𝛽2𝑋𝑖2 + 𝛽3𝑋𝑖1𝑋𝑖2 + 𝜖𝑖

Statistical interactions are a very powerful modeling tool that can help
us understand the relationship between different experimental manip-
ulations or between manipulationes and covariates (such as age). We
discuss their role in experimental design – as well as some of the in-
terpretive challenges that they pose – in much more detail in Chap-
ter 9.10

7.1.4 When does linear regression work?
Linear regression modeling with OLS is an incredibly powerful tech-
nique for creating models to estimate the influence of multiple predic-
tors on a single dependent variable. In fact, OLS is in a mathematical
sense the best way to fit a linear model!11 But OLS only “works” – in
the sense of yielding good estimates – if three big conditions are met.

1. The relationship between the predictor and outcome must be lin-
ear. In our comparison of Alice’s and Bob’s expected outcomes
based on their 1-year age difference, we were able to interpret
the coefficient 𝛽2 as the average difference in 𝑌𝑖 when compar-
ing participants who differ by 1 year of age, regardless of whether
those ages are 20 vs. 21 or 50 vs. 51. If we believed this relation-
ship was non-linear, then we could transform our predictor – for
example, including a quadratic effect of age by adding a 𝛽3 ∗ 𝑋2

2
term. The relationship between this new predictor and the out-
come would still be linear, however. It is always a good idea to
use visualizations like scatter plots to look for possible problems
with assuming a linear relationship between a predictor and your
outcome.

2. Errors must be independent. In our example, observations in the
regression model (i.e., rows in the dataset) were sampled inde-
pendently: each participant was recruited independently to the
study and each performed a single trial. On the other hand, sup-
pose we have repeated-measures data in which we sample partic-
ipants, and then obtained multiple measurements for each partici-
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12 Specifically, the variance of a bi-
nary variable with probability 𝑝 is sim-
ply 𝑝(1 − 𝑝), which is largest when 𝑝 =
0.50.
13 OLS can also be used with binary
outcomes, in which case the coeffi-
cients represent differences in probabil-
ities. However, the usual model-based
standard errors will be incorrect.

pant. Within each participant, measurements would likely be cor-
related (perhaps because participants differ on their general level
of tea enjoyment). This correlation can invalidate inferences from
amodel that does not accommodate the correlation. We’ll discuss
this problem in detail below.

3. Errors must be normally distributed and unrelated to the predic-
tor. Imagine older people have very consistent tea-ordering pref-
erences while younger people do not. In that case, the models’ er-
ror termwould be less variable for older participants than younger
ones. This issue is called heteroskedasticity. It is a good idea to
plot each independent variable versus the residuals to see if the
residuals are more variable for certain values of the independent
variable than for others.

If any of these three conditions are violated, it can undermine the esti-
mates and inferences you draw from your model.

7.2 Generalized linear models
So far we have considered continuous outcome measures, like tea rat-
ings. What if we instead had a binary outcome, such as whether a partic-
ipant liked or didn’t like the tea, or a count outcome, such as the number
of cups a participant chose to drink? These and other non-continuous
outcomes often violate the assumptions of OLS, in particular because
they often induce heteroskedastic errors.
Binary outcomes inherently produce heteroskedastic errors because the
variance of a binary variable depends directly on the outcome probabil-
ity. Errors will be more variable when the outcome probability is closer
to 0.50, and much less variable for when the probability is closer to 0
or 1.12 This heteroskedasticity in turn means that inferences from the
model (e.g., 𝑝-values) can be incorrect; sometimes just a little bit off but
sometimes dramatically incorrect.13

Happily, generalized linear models (GLMs) are regression models
closely related to OLS that can handle non-continuous outcomes.
These models are called “generalized” because OLS is one of many
members of this large class of models. To see the connection, let’s first
write an OLS model more generally in terms of what it says about the
expected value of the outcome, which we notate as 𝐸[𝑌𝑖]:

𝐸[𝑌𝑖] = 𝛽0 +
𝑝

∑
𝑗=1

𝛽𝑗𝑋𝑖𝑗
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Figure 7.2: An example of how lo-
gistic regression transforms a change in
the mean-centered predictor X into a
change in the expected outcome Y. The
same absolute change in X is associated
in a large difference in the probability of
the outcome when X is near its mean
(blue) vs. a small change in the outcome
when X is large (red) or small.

where 𝑝 is the number of independent variables, 𝛽0 is the intercept, and
𝛽𝑗 is the regression coefficient for the 𝑗𝑡ℎ independent variable. This
equation is just a math-y way of saying that you predict from a regres-
sion model by adding up each of the predictors’ contributions to the
expected outcome (𝛽𝑗𝑋𝑖𝑗).

The linear predictor of a GLM (i.e., 𝛽0 +∑𝑝
𝑗=1 𝛽𝑗𝑋𝑖𝑗) looks exactly the

same as for OLS, but instead of modeling 𝐸[𝑌𝑖], a GLM models some
transformation, 𝑔(.), of the expectation:

𝑔(𝐸[𝑌𝑖]) = 𝛽0 +
𝑝

∑
𝑗=1

𝛽𝑗𝑋𝑖𝑗

GLMs involve transforming the expectation of the outcome, not the out-
come itself ! That is, in GLMs, we are not just taking the outcome vari-
able in our dataset and transforming it before fitting an OLS model, but
rather we are fitting a different model entirely, one that posits a fun-
damentally different relationship between the predictors and the ex-
pected outcomes. This transformation is called the link function. In
other words, to fit different kinds of outcomes, all we need to do is con-
struct a standard linear model and then just transform its output via the
appropriate link function.
Perhaps the most common link function is the logit link, which is suit-
able for binary data. This link function looks like this, where 𝑤 is any
probability that is strictly between 0 and 1:

𝑔(𝑤) = log( 𝑤
1 − 𝑤)

The term 𝑤/(1 − 𝑤) is called the odds and represents the probability of
an event occurring divided by the probability of its not occurring. The
resulting model is called logistic regression and looks like:

logit(𝐸[𝑌𝑖𝑡]) = log( 𝐸[𝑌𝑖]
1 − 𝐸[𝑌𝑖]

) = 𝛽0 +
𝑝

∑
𝑗=1

𝛽𝑗𝑋𝑖𝑗

Exponentiating the coefficients (i.e., 𝑒𝛽) would yield odds ratios, which
are the multiplicative increase in the odds of 𝑌𝑖 = 1 that is associated
with a one-unit increase in the relevant predictor variable.
Figure 7.2 shows the way that a logistic regression model transforms a
predictor (𝑋) into an outcome probability that is bounded at 0 and 1.
Critically, although the predictor is still linear, the logit link means that
the same change in 𝑋 can result in a different change in the absolute
probability of 𝑌 depending on where you are on the 𝑋 scale. In this
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14 We sometimes think of linear mod-
els as a set of tinker toys you can snap
together to stack up a set of predictors.
In that context, link functions are an ex-
tra “attachment” that you can snap onto
your linear model to make it generate a
different response type.

example, if you are in the middle of the predictor range, a one-unit
change in 𝑋 results in a 0.24 change in probability (blue). At a higher
value, the change is much smaller (0.02). Notice how this is different
from the linear regression model above, where the same change in age
always resulted in the same change in preference!

CODE

GLMs are as easy to fit in R as standard LMs. You simply need to call the glm() function – and to specify the link
function. For our example above of a binary “liking” judgment, the call would be:

glm(liked_tea ~ condition, data = tea_data, family = "binomial")

The family argument specifies the type of distribution being used, where binomial is the logistic link function.

We have only scratched the surface of GLMs here. First, there are many
different link functions that are suitable for different outcome types.
And second, GLMs differ from OLS not only in their link functions,
but also in how they handle the error terms. Our broader goal in this
chapter is to show you how regression models are models of data. In that
context, GLMs use link functions as a way tomakemodels that generate
many different times types of outcome data.14

7.3 Linear mixed effects models
Experimental data often contain multiple measurements for each par-
ticipant (so-called repeated measures). In addition, these measurements
are often based on a sample of stimulus items (which then each havemul-
tiple measures as well). This clustering is problematic for OLS models,
because the error terms for each datapoint are not independent.
Non-independence of datapoints may seem at first glance like a small
issue, but it can present a deep problem for making inferences. Take the
tea-tasting data we looked at above, where we had 24 observations in
each condition. If we fit an OLS model, we observe a highly significant
tea-first effect. Here is the estimate and confidence interval for that
coefficient: 𝑏 = −2.42, 95% CI [−3.50, −1.33]. Based on what we
talked about in the previous chapter, it seems like we’d be licensed in
rejecting the null hypothesis that this effect is due to sampling variation
and interpret this instead as evidence for a generalizable difference in
tea preference in our sampled population.
But suppose we told you that all of those 48 total observations (24 in
each condition) were from one individual named George. That would
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15 We discuss the strengths and weak-
nesses of repeated-measures designs like
this in Chapter 9 and the statistical trade-
offs of having many people with a small
number of observations per person vs. a
small number of people with many ob-
servations per person in Chapter 10.

16 Formally, we’d notate this random
variation by saying that 𝛾𝑖 ∼ 𝑁(0, 𝜏2)
– in other words, that participants’ ran-
dom intercepts are sampled from a nor-
mal distribution around the shared inter-
cept 𝛽0 with standard deviation 𝜏 .

change the picture considerably. Now we’d have no idea whether the
big effect we observed reflected a difference in the population, but we
would have a very good sense of what George’s preference is!15 The
confidence intervals and p-values from ourOLSmodel would be wrong
now because all of the error terms would be highly correlated – they
would all reflect George’s preferences.
How can we make models that deal with clustered data? There are a
number of widely-used approaches for solving this problem including
linear mixed effects models, generalized estimating equations, and clus-
tered standard errors (often used in economics). Here we will illustrate
how the problem gets solved in linear mixed models, which are an ex-
tension of OLS models that are fast becoming a standard in many areas
of psychology (Bates et al. 2014).

7.3.1 Modeling random variation in clusters
In linear mixed effects models, we modify the linear predictor itself to
model differences across clusters. Instead of just measuring George’s
preferences, suppose we modified the original tea-tasting experiment
(without the age covariate) to collect ten ratings from each participant:
five milk-first and five tea-first. We define the model the same way as
we did before, with some minor differences:

𝑌𝑖𝑡 = 𝛽0 + 𝛽1𝑋𝑖𝑡 + 𝛾𝑖 + 𝜖𝑖𝑡

where 𝑌𝑖𝑡 is participant 𝑖’s rating in trial 𝑡 and 𝑋𝑖𝑡 is the participant’s
assigned treatment in trial 𝑡 (i.e., milk-first or tea-first).
If you compare this equation to theOLS equation above, youwill notice
that we added two things. First, we’ve added subscripts that distinguish
trials from participants. But the big one is that we added 𝛾𝑖, a separate
intercept value for each participant. We call this a random intercept
because it varies across participants (who are randomly selected from
the population).16

The random intercept means that we have assumed that each participant
has their own typical “baseline” tea rating – some participants overall
just like tea more than others – and these baseline ratings are normally
distributed across participants. Thus, ratings are correlated within par-
ticipants because ratings cluster around each participant’s distinct base-
line tea rating. This model is better able to block misleading inferences.
For example, suppose we only had one participant in each condition
(say, George provided 24 milk-first ratings and Alice provided 24 tea-
first ratings). If we found higher ratings in one condition, we would be
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17 Of course, this would be a terrible ex-
periment! Ideally, we would address this
problem upstream in our experiment de-
sign; see Chapter 9.

18 These random slopes and intercepts
can be assumed to be independent or
correlated with one another, depending
on the modeler’s preference.
19 There’s lots of debate in the literature
about the best random effect structure
for mixed effects models. This is a very
tricky and technical subject. In brief,
some folks argue for so-called maximal
models, in which you include every ran-
dom effect that is justified by the design
(Barr et al. 2013). Here thatwouldmean
including random slopes for each partic-
ipant. The problem is that these models
can get very complex, and can be very
hard to fit using standard software. We
won’t weigh in on this topic, but as you
start to use these models on more com-
plex experimental designs, it might be
worth reading up.

able to attribute this difference to participant-level variation rather than
to the treatment.17

Following the same logic, we could fit random intercepts for different
stimulus items (for example, if we used different types of tea for dif-
ferent trials). We modeled participants as having normally distributed
variation, andwe canmodel stimulus variation the sameway. Each stim-
ulus item is assumed to produce a particular average outcome (i.e. some
teas are tastier than others), with these average outcomes sampled from
a normally distributed population.

CODE

Remarkably, GLMMs are not much harder to specify in R than standard LMs. One very popular package is lme4
(Bates et al. 2014), which provides the lmer() and glmer() functions (the latter for generalized linear mixed effect
models). For our example here, we’d write:

library(lme4)
lmer(rating ~ condition + (1 | id), data = tea_data)

In this model, the syntax (1 | id) specifies that we want a random intercept for each level of id.

7.3.2 Random slopes and the challenges of mixed effects models
Linear mixed effects models can be further extended to model cluster-
ing of the independent variables’ effects within subjects, not just clus-
tering of average outcomes within subjects. To do so, we can introduce
random slopes (𝛿𝑖) to the model, which are multiplied by the condition
variable 𝑋 and represent differences across participants in the effect of
tea-tasting:

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖𝑡 + 𝛾𝑖 + 𝛿𝑖𝑋𝑖𝑡 + 𝜖𝑖𝑡

Just like the random intercepts, these random slopes will be assumed to
vary across participants, following a normal distribution.18

This model now describes random variation in both overall how much
someone likes tea and how strong their ordering preference is. Both of
these likely do vary in the population and so it seems like a good thing
to put these in your model. Indeed under some circumstances, adding
random slopes is argued to be very important for making appropriate
inferences.19
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20 Though we should note that these pa-
rameters aren’t technically all indepen-
dent from one another due to the struc-
ture of the mixed effect model.

21 Many R users may be familiar with
the widely-used lme4 package for fit-
ting mixed effects models using frequen-
tist tools related to maximum likeli-
hood. Such models can also be fit us-
ing Bayesian inference with the brms
package, which provides many powerful
methods for specifying complex models.
22 One particularly problematic situa-
tion is when the correlation structure
of the errors is mis-specified, for exam-
ple if observations within a participant
are more correlated for participants in
the treatment group than in the control
group; in such cases, mixed model esti-
mates can be substantially biased (Bie et
al. 2021).

CODE

Specifying random slopes in the lme4 package is also relatively straightforward:

lmer(rating ~ condition + (condition | id), data = tea_data)

Here, (condition | id) means “a separate random slope for condition should be fit for each level of id.” Of
course, specifying such a model is easier than fitting it correctly.

On the other hand, the model is much more complicated. When we
had a simple OLS model above, we had only two parameters to fit (𝛽0
and 𝛽1) but now we have those two plus two more, representing the
standard deviations of the individual participant intercepts and slopes,
plus parameters for each participant and for the condition effect for each
participant. So we went from two parameters to 24!20 This complexity
can lead to problems in fitting the models, especially with very small
datasets (where these parameters are not very well-constrained by the
data) or very large datasets (where computing all these parameters can
be tricky).21

More generally, linear mixed effects models are very flexible, and they
have become quite common in psychology. But they do have signifi-
cant limitations. As we discussed, they can be tricky to fit in standard
software packages. Further, the accuracy of these models relies on our
ability to specify the structure of the random effects correctly.22 If we
specify an incorrect model, our inferences will be wrong! But it is some-
times difficult to know how to check whether your model is reasonable,
especially with a small number of clusters or observations.

7.4 How do you use models to analyze data?
In the prior parts of this chapter, we’ve described a suite of regression-
based techniques – standard OLS, the generalized linear model, and lin-
ear mixed effects models – that can be used to model the data result-
ing from randomized experiments (as well as many other kinds of data).
The advantage of regression models over the simpler estimation and in-
ference methods we described in the prior two chapters is that these
models can more effectively take into account a range of different kinds
of variation including covariates, multiple manipulations, and clustered
structure. Further, when used appropriately to analyze a well-designed
randomized experiment, regression models can give an unbiased esti-
mate of a causal effect of interest, our main goal in doing experiments.
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But – practically speaking – how should go you about building a model
for your experiment? What covariates should you include and what
should you leave out? There are many ways to use models to explore
datasets, but in this section we will try to sketch a default approach for
the use of models to estimate causal effects in experiments in the most
straightforward way. Think of this as a starting point. We’ll begin this
section by giving a set of rules of thumb, then discuss a worked example.
Our final subsections will deal with the issues of when you should in-
clude covariates in your model and how to check if your result is robust
across multiple different model specifications.

 DEPTH

An alternative approach: Generalized estimating equations
A second class of methods that helps resolve issues of clustering is generalized estimating equations (GEE). In this
approach, we leave the linear predictor alone. We do not add random intercepts or slopes, nor do we assume
anything about the distribution of the errors (i.e., we no longer assume that they are normal, independent, and
homoskedastic).
In GEE, we instead provide themodel with an initial “guess” about howwe think the errors might be related to one
another; for example, in a repeated-measures experiment, wemight guess that the errors are exchangeable, meaning
that they are correlated to the same degree within each participant but are uncorrelated across participants. Instead
of assuming that our guess is correct, as do linear mixed models (LMM), GEE estimates the correlation structure
of the errors empirically, using our guess as a starting point, and it uses this correlation structure to arrive at point
estimates and inference for the regression coefficients. Remarkably, as the number of clusters and observations
become very large, GEE will always provide unbiased point estimates and valid inference, even if our guess about
the correlation structure was bad. Additionally, with simple finite-sample corrections (Mancl and DeRouen 2001),
GEE seems to provide valid inference at smaller numbers of clusters than does LMM.
The price paid for these nice safeguards against model misspecification is that, in principle, GEE will typically have
less statistical power than LMM if the LMM is in fact correctly specified, but the difference may be surprisingly
slight in practice (Bie et al. 2021). For these reasons, some of this book’s authors actually favor GEE with finite-
sample corrections over LMM as the default model for clustered data, though they are much less common in
psychology.

7.4.1 Modeling rules of thumb
Our approach to statistical modeling is to start with a “default model”
that is known in the literature as a saturatedmodel. The saturatedmodel
of an experiment includes the full design of the experiment – all main
effects and interactions – and nothing else. If you are manipulating a
variable, include it in your model. If you are manipulating two, in-
clude them both and their interaction. If your design includes repeated
measurements for participants, include a random effect of participant;
if it includes experimental items for which repeated measurements are
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23 As discussed above, you can also
include the “maximal” random effect
structure (Barr et al. 2013), which in-
volves random slopes as well as intercepts
– but recognize that you cannot always
fit such models.

24 One corollary to having this kind
of default perspective on data analysis:
When you see an analysis that deviates
substantially from the default, these de-
viations should provoke some questions.
If someone drops a manipulation from
their analysis, adds a covariate or two,
or fails to control for some clustering in
the data, did they deviate because of dif-
ferent norms in their sub-field, or was
there some other rationale? This line of
reasoning sometimes leads to questions
about the extent to which particular an-
alytic decisions are post-hoc and driven
by the data (in other words, 𝑝-hacked).
For an example, see the case study in
Chapter 11.
25 A side benefit of preregistration is
it makes you think through whether
your experimental design is appropriate
– that is, is there actually an analysis ca-
pable of estimating the effect you want
from the data you intend to collect?

made, include random effect of stimulus.23

Don’t include lots of other stuff in your default model. You are doing
a randomized experiment, and the strength of randomized experiments
is that you don’t have to worry about confounding based on the popu-
lation (see Chapter 1). So don’t put a lot of covariates in your default
model – usually don’t put in any!24

This default saturated model then represents a simple summary of your
experimental results. Its coefficients can be interpreted as estimates of
the effects of interest, and it can be used as the basis for inferences about
the relation of the experimental effect to the population using either
frequentist or Bayesian tools.
Here’s a bit more guidance about this modeling strategy.

1. Preregister your model. If you change your analysis approach af-
ter you see your data, you risk 𝑝-hacking – choosing an analysis
that biases the estimate of your effect of interest. As we discussed
in Chapter 3 and as we will discuss in more detail in Chapter 11,
one important strategy for minimizing this problem is to prereg-
ister your analysis.25

2. Visualize the model predictions against the observed data. As
we’ll discuss in Chapter 15, the “default model” for an experi-
ment should go alongside a “default visualization” known as the
design plot that similarly reflects the full design structure of the
experiment and any primary clusters. One way to check whether
a model fits your data is then to plot it on top of those data. Some-
times this combination of model and data can be as simple as a
scatter plot with a regression line. But seeing the model plotted
alongside the data can often reveal a mismatch between the two.
A model that does not describe the data very well is not a good
source of generalizable inferences!

3. Interpret the model predictions. Once you have a model, don’t
just read off the 𝑝-values for your coefficients of interest. Walk
through the each coefficient, considering how it relates to your
outcome variable. For a simple two group design like we’ve been
considering, the condition coefficient is the estimate of the causal
effect that you intended to measure! Consider its sign, its magni-
tude, and its precision (standard error or confidence interval).

That said, there are some contexts in which it does make sense to de-
part from the default saturated model. For example, there may be in-
sufficient statistical power to estimate multiple interaction terms, or co-
variates might be included in the model to help handle certain forms of
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Figure 7.3: Example stimulus materials
analogous to those used in Stiller, Good-
man, and Frank (2015).

missing data. The default model simply represents a very good starting
point.

7.4.2 A worked example
All this advice may seem abstract, so let’s put it into practice on a simple
example. For a change, let’s look at an experiment that’s not about tea
tasting. Here we’ll consider data from an experiment testing preschool
children’s language comprehension (Stiller, Goodman, and Frank 2015).
In this experiment, 2–5 year old children saw displays like the one in
Figure 7.3. In the experimental condition, a puppet might say, for ex-
ample, “My friend has glasses! Which one is my friend?” The goal was
to measure how many children made the “pragmatic inference” that
the puppet’s friend was the face with glasses and no hat.
To estimate the effect, participants were randomly assigned to either the
experimental condition or to a control condition in which the puppet
had eaten too much peanut butter and couldn’t talk, but they still had
to guess which face was his friend. There were also three other types
of experimental stimuli (houses, beds, and plates of pasta). Data from
this experiment consisted of 588 total observations from 147 children,
with all four stimuli presented to each child. The primary hypothesis of
this experiment was that that preschool children could make pragmatic
inferences by correctly inferring which of the three faces (for example)
the puppet was describing.

CODE

If youwant to follow alongwith this example, you’ll have to load the example data and do a little bit of preprocessing
(also covered in Appendix D):

repo <- "https://raw.githubusercontent.com/langcog/experimentology/main/"
sgf <- read_csv(file.path(repo, "data/tidyverse/stiller_scales_data.csv")) |>
mutate(age_group = cut(age, 2:5, include.lowest = TRUE),

condition = condition |>
fct_recode("Experimental" = "Label", "Control" = "No Label"))

All this advice may seem abstract, so let’s put it into practice on a simple
example. For a change, let’s look at an experiment that’s not about tea
tasting. Here we’ll consider data from an experiment testing preschool
children’s language comprehension , we also use these data in D. In
this experiment, 2–5 year old children saw displays like the one in Fig-
ure 7.3. In the experimental condition, a puppet might say, for exam-
ple, “My friend has glasses! Which one is my friend?” The goal was to
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26 Our sampling plan for this experi-
ment was actually stratified across age,
meaning that we intentionally recruited
the same number of participants for each
one-year age group – because we antici-
pated that agewas highly correlatedwith
children’s ability to succeed in this task.
We’ll describe this kind of sampling in
more detail in Chapter 10.
27 This experiment was not preregis-
tered, but the paper includes a separate
replication dataset with the same analy-
sis.
28 As discussed above, this is a tricky
decision-point; we could very reason-
ably have added random slopes as well.

measure how many children made the “pragmatic inference” that the
puppet’s friend was the face with glasses and no hat.
To estimate the effect, participants were randomly assigned to either the
experimental condition or to a control condition in which the puppet
had eaten too much peanut butter and couldn’t talk, but they still had
to guess which face was his friend. There were also three other types
of experimental stimuli (houses, beds, and plates of pasta). Data from
this experiment consisted of 588 total observations from 147 children,
with all four stimuli presented to each child. The primary hypothesis of
this experiment was that that preschool children could make pragmatic
inferences by correctly inferring which of the three faces (for example)
the puppet was describing.

Figure 7.4: Data for Stiller, Goodman,
and Frank (2015). Each point shows
a single participant’s proportion correct
trials (out of 4 experimental stimuli)
plotted by age group, jittered slightly to
avoid overplotting. Larger points and as-
sociated confidence intervals showmean
and 95% confidence intervals for each
condition.

This experimental design looks a lot like some versions of our
tea-tasting experiment. We have one primary condition manipula-
tion (the puppet provides information versus does not), presented
between-participants so that some participants are in the experimental
condition and others are in the control condition. Our measurements
are repeated within participants across different experimental stimuli.
Finally, we have one important, pre-planned covariate: children’s age.
Experimental data are plotted in Figure 7.4.26

How should we go about making our default model for this dataset?27
We simply include each of these design factors in a mixed effects model;
we use a logistic link function for our mixed effects model (a general-
ized linear mixed effects model) because we would like to predict cor-
rect performance on each trial, which is a binary variable. So that gives
us an effect of condition and age as a covariate. We further add an in-
teraction between condition and age in case the condition effect varies
meaningfully across groups. Finally, we add random effects of partici-
pant, 𝛾𝑖, and experimental item, 𝛾𝑡.28

The resulting model looks like this:

logit(𝐸[𝑌𝑖𝑡]) = 𝛽0 + 𝛽1𝑋𝑖1 + 𝛽2𝑋𝑖2 + 𝛽3𝑋𝑖1𝑋𝑖2 + 𝛾𝑖 + 𝛿𝑡
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29 We have centered our age predictor
in this example so that all estimates from
our model are for the average age of our
participants. Centering is a good prac-
tice for modeling continuous predictors
because it increases the interpretability
of other parts of the model. For exam-
ple, because age is centered in this model,
the intercept 𝛽0 can be interpreted as the
predicted odds of a correct trial for a par-
ticipant in the control condition at the
average age.

Let’s break this complex equation down left to right:

– logit(𝐸[𝑌𝑖𝑡]) says that we are predicting a logistic function of
𝐸[𝑌𝑖𝑡] (where 𝑌𝑖𝑡 indicates whether child 𝑖 was correct on trial
𝑡).

– 𝛽0 is the intercept, our estimate of the average log-odds (i.e., the
log of the odds ratio) of correct responses for participants in the
control condition.

– 𝛽1𝑋𝑖1 is the condition predictor. 𝛽1 represents the change in log-
odds associated with being in the experimental condition (the
causal effect of interest!), and 𝑋𝑖1 is an indicator variable that is
1 if child 𝑖 is in the experimental condition and 0 for the control
condition. Multiplying 𝛽1 by this indicator means that the predic-
tor has the value 0 for participants in the control condition and 𝛽1
for those in the experimental condition.

– 𝛽2𝑋𝑖2 is the age predictor. 𝛽2 represents the difference in log-
odds associatedwith one additional year of age for participants int
he control condition[The age coefficient is a simple effect, mean-
ing it is the effect of age in the control condition only. That’s
because we have dummy coded the condition predictor. If we
wanted the average age effect (the main effect) then we would
need to use contrast coding, per the note in the Interactions sec-
tion above.], and 𝑋𝑖2 is the age for each participant.29

– 𝛽3𝑋𝑖1 ∗ 𝑋𝑖2 is the interaction between experimental condition
and age. 𝛽3 represents the difference in log odds (i.e., the log of
the odds ratio) that is associated with being one year older and
in the experimental condition versus the control condition. This
term is multiplied by both each child’s age and the condition in-
dicator 𝑋𝑖.

– 𝛾𝑖 is the random intercept for participant 𝑖, capturing individual
variation in the odds of success across trials.

– 𝛾𝑡 is the random intercept for stimulus 𝑡, capturing variation in
the odds of success across the four different stimuli.

Table 7.2: Estimated effects for our generalized linear mixed effects model on data from
Stiller, Goodman, and Frank (2015).
term estimate conf.int statistic p.value
Control condition 0.80 [0.42, 1.18] 4.16 < .001
Age (years) 0.55 [0.21, 0.88] 3.19 .001
Expt condition -2.26 [-2.70, -1.82] -10.07 < .001
Age (years) * Expt condition -0.92 [-1.43, -0.42] -3.60 < .001
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30 Participant means are estimated to
have a standard deviation of 0.23 (in log-
odds) while items have a standard devia-
tion of 0.27. These indicate that both of
our random effects capture meaningful
variation.

CODE

To fit themodel described above, the first step is to prepare your predictors. In this case, we center the age predictor.

sgf$age_centered <- scale(sgf$age, center = TRUE, scale = FALSE)

Again we use the lme4 package, this time with the glmer() function. Again we have to specify our link function,
just like in a standard GLM, by choosing the distribution family.

mod <- glmer(correct ~ age_centered * condition + (1|subid) + (1|item),
family = "binomial", data = sgf)

You can see a summary of the fitted model using summary(mod) as before. The only big difference from lm() is
that here you can extract both fixed and random effects (with fixef(mod) and ranef(mod) respectively).

Let’s estimate this model and see how it looks. We’ll focus here on
interpretation of the so-called fixed effects (the main predictors), as op-
posed to the participant and item random effects.30 Table 7.2 shows the
coefficients. Again, let’s walk through each.

– The intercept (control condition estimate) is ̂𝛽 = 0.80, 95% CI
[0.42, 1.18], 𝑧 = 4.16, 𝑝 < .001. This estimate reflects that the
log-odds of a correct response for an average-age participant in
the control condition is 0.8, which corresponds to a probability
of 0.69. If we look at Figure 7.4, that estimate makes sense: 0.69
seems close to the average for the control condition.

– The age effect estimate is ̂𝛽 = 0.55, 95% CI [0.21, 0.88], 𝑧 = 3.19,
𝑝 = .001. This means there is a slight decrease in the log-odds
of a correct response for older children in the control condition.
Again, looking at Figure 7.4, this estimate is interpretable: we see
a small decline in the probability of a correct response for the
oldest age group.

– The key experimental condition estimate then is ̂𝛽 = −2.26, 95%
CI [−2.70, −1.82], 𝑧 = −10.07, 𝑝 < .001. This estimate means
that the log-odds of a correct response for an average-age partic-
ipant in the experimental condition is the sum of the estimates
for the control (intercept) and the experimental conditions: 0.8
+ -2.26, which corresponds to a probability of 0.19. Grounding
our interpretation in Figure 7.4, this estimate corresponds to the
average value for the experimental condition.

– Finally, the interaction of age and condition is ̂𝛽 = −0.92, 95%CI
[−1.43, −0.42], 𝑧 = −3.60, 𝑝 < .001. This positive coefficient
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reflects thatwith every year of age, the difference between control
and experimental conditions grows.

In sum, this model suggests that there was a substantial difference in
performance between experimental and control conditions, in turn sup-
porting the hypothesis that children in the sampled age group can per-
form pragmatic inferences above chance.
This example illustrates the “default saturated model” framework that
we recommend – the idea that a single regression model corresponding
to the design of the experiment can yield an interpretable estimate of
the causal effect of interest, even in the presence of other sources of
variation.

 DEPTH

When does it makes sense to include covariates in a model?
Let’s come back to one piece of advice that we gave above about making a “default” model of an experiment: not
including covariates. This advice can seem surprising. Many demographic factors are of interest to psychologists
and other behavioral scientists, and in observational studies these factors will almost always be related to important
life outcomes. So why not put them into our experimental models? After all, we did include age in our worked
example above!
Well, if you have one or at most a small handful of covariates that you believe are meaningfully related to the
outcome, you can plan in advance to put them in your model. If you think that your effect is likely to bemoderated
a specific demographic characteristic – as we didwith age in our developmental example above – then this inclusion
can be quite useful.
Further, including covariates can increase the precision of your estimates by reducing “noise” in your outcome,
if you hypothesize that they interact. What’s surprising though is how little this adjustment does to increase your
overall precision unless the correlation between covariate and outcome is very strong.

Figure 7.5: Decreases in estimation error due to adjusting for covariates, plotted by the N participants in each group and the
correlation between the outcome (X) and the covariate (Z).
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31 Although we don’t cover this point
here, ANOVAs are also a special case of
regression.

Figure 7.5 shows the results of a simple simulation investigating the relationship between estimation error and the
inclusion of covariates. Only when the correlation between covariate and outcome (e.g., age and tea rating) is
greater than 𝑟 = 0.6 to 𝑟 = 0.8 does this adjustment really help.
That said, there are quite a few reasons not to include covariates. These motivate our recommendation to skip
them in your default model unless you have very strong theory-based expectations for either (A) a correlation with
the outcome or (B) a strong moderation relationship.
The first reason not to include covariates is simply because we don’t need to. Because randomization cuts causal
links, our experimental estimate is an unbiased estimate of the causal effect of interest (at least for large samples).
We are guaranteed that, in the limit of many different experiments, even though people with different ages will be
in the different tea tasting conditions, this source of variation will be averaged out. Actually, including unnecessary
covariates into models (slightly) decreases the probability that the model can detect a true effect (that is, it decreases
statistical precision and power). Just by chance, covariates can “soak up” variation in the outcome, leaving less to
be accounted for by the true effect!
The second reason is that you can actually compromise your causal inference by including some covariates, par-
ticularly those that are collected after randomization. The logic of randomization is that you cut all causal links
between features of the sample and the condition manipulation. But you can “uncut” these links by accident by
adding variables into your model that are related to group status. This problem is generically called conditioning
on post-treatment variables and a full discussion of is out of the scope of this book, but it’s something to avoid (and
read up on if you’re worried about it, see Montgomery, Nyhan, and Torres 2018).
Finally, one of the standard justifications for adding covariates – because your groups are unbalanced – is actually
ill-founded as well. People often talk about “unhappy randomization”: you randomize to the different tea-tasting
groups, for example, but then it turns out the mean age is a bit different between groups. Then you do a 𝑡-test
or some other statistical test and find out that you actually have a significant age difference. This practice makes
no sense! Because you randomized, you know that the difference in ages occurred by chance. Further, incidental
demographic differences between groups are unlikely to be important unless that characteristic is highly correlated
with the outcome (see above). Instead, if the sample size is small enough that meaningfully large incidental differ-
ences could arise in important confounders, then it is preferable to stratify on that confounder at the outset – we’ll
have lot more to say about this issue in Chapter 10.
So these are our options: if a covariate is known to be very strongly related to our outcome, we can include it in
our default model. Otherwise, we avoid a lot of trouble by leaving covariates out.

7.4.1 Robustness checks and the multiverse
Using the NHST statistical testing approach that has been common in
the psychology literature, even a simple two factor experimental de-
sign affords a host of different 𝑡-tests and ANOVAs,31 offering many op-
portunities for 𝑝-hacking and selective reporting. We’ve been advocat-
ing here instead for a “default model” approach in which you pre-plan
and pre-register a single regression model that captures the planned fea-
tures of your experimental design including manipulations and sources
of clustering. This approach can help you to navigate some of the com-
plexity of data analysis by having a standard approach that you take in
almost every case.
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32 Tobe fair, often the analytic questions
being investigated in “Many Analysts”
projects are more complex than the sim-
ple experiments we recommend doing,
and there is debate about how much
true variability these investigations re-
veal (Breznau et al. 2022; Mathur, Cov-
ington, and VanderWeele 2023).

Not every dataset will be amenable to this approach, however. For
complex experimental designs or unusual measures, sometimes it can
be hard to figure out how to specify or fit the default saturated model.
And especially in these cases, the choice of model can make a big differ-
ence to the magnitude of the reported effect. To quantify variability in
effect size due to model choice, “Many Analysts” projects have asked a
set of teams to approach a dataset using different analysis methods. The
result from these projects has been that there is substantial variability in
outcomes depending on what approach is taken (Silberzahn et al. 2018;
Botvinik-Nezer et al. 2020).32

Robustness analysis (also sometimes called “sensitivity analysis” or
“multiverse analysis”, which sounds cooler) is a technique for address-
ing the possibility that an individual analysis over- or under-estimates
a particular effect by chance (Steegen et al. 2016). The general idea
is that analysts explore a space of different possible analyses. In its
simplest form, alternative model specifications can be reported in a
supplement; more sophisticated versions of the idea call for averaging
estimates across a range of possible specifications and reporting this
average as the primary effect estimate.
The details of this kind of analysis will vary depending on what you
are worried about your model being sensitive to. One analyst might
be concerned about the effects of adding different covariates; another
might be using a Bayesian framework and be concerned about sensitivity
to particular prior values. If you get similar results across many different
specifications, you can sleep better at night. The primary principle to
take home is a bit of humility about our models. Any given model is
likely wrong in some of its details. Investigating the sensitivity of your
estimates to the details of your model specification is a good idea.

7.5 Chapter summary: Models
In the last three chapters, we have spelled out a framework for data
analysis that focuses on our key experimental goal: a measurement of a
particular causal effect. We began with basic techniques for estimating
effects and making inferences about how these effects estimated from a
sample can be generalized to a population. This chapter showed how
these ideas naturally give rise to the idea of making models of data,
which allow estimation of effects in more complex designs. Simple re-
gression models, which are formally identical to other inference meth-
ods in the most basic case, can be extended with the generalized linear
model as well as with mixed effects models. Finally, we ended with
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some guidance on how to build a “default model” – an (often pre-
registered) regression model that maps onto your experimental design
and provides the primary estimate of your key causal effect.

DISCUSSION QUESTIONS

1. Choose a paper that you have read for your research and take a look at the statistical analysis. Does the reporting
focus more on hypothesis testing or on estimating effect sizes?

2. We focused here on the linear model as a tool for buildingmodels, contrasting this perspective with the common
“statistical testing” mindset. But – here’s the mind-blowing thing – most of those statistical tests are special
cases of the linear model anyway. Take a look at this extended meditation on the equivalences between tests
and models: https://lindeloev.github.io/tests-as-linear/#9_teaching_materials_and_a_course_outline. If the
paper you chose for question 1 used tests, could their tests be easily translated to models? How would the use
of a model-based perspective change the results section of the paper?

3. Take a look at this cool visualization of hierarchical (mixed effect) models: http://mfviz.com/hierarchical-
models/. In your own research, what are the most common units that group together your observations?

READINGS

– An opinionated practical guide to regression modeling and data description: Gelman, A., Hill, J., & Vehtari, A.
(2020). Regression and other stories. Cambridge University Press. Free online at https://avehtari.github.io/ROS-
Examples/.

– A more in-depth introduction to the process of developing Bayesian models of data that allow for estimation
and inference in complex datasets: McElreath, R. (2020). Statistical rethinking: A Bayesian course with examples in
R and Stan. Chapman and Hall/CRC. Free materials available at https://xcelab.net/rm/statistical-rethinking/.

https://lindeloev.github.io/tests-as-linear/#9_teaching_materials_and_a_course_outline
http://mfviz.com/hierarchical-models/
http://mfviz.com/hierarchical-models/
https://avehtari.github.io/ROS-Examples/
https://avehtari.github.io/ROS-Examples/
https://xcelab.net/rm/statistical-rethinking/
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1 As such, measurement is a perenni-
ally controversial topic in philosophy of
science. For an overview of competing
frameworks, see Tal (2020) or Maul, Ir-
ribarra, and Wilson (2016), which fo-
cuses specifically onmeasurement in psy-
chology.

8 MEASUREMENT

🍏 LEARNING GOALS

– Discuss the reliability and validity of psychological measures
– Reason about tradeoffs between different measures and measure types
– Identify the characteristics of well-constructed survey questions
– Articulate risks of measurement flexibility and the costs and benefits of multiple measures

In the previous section of the book, we described a set of measurement-
focused statistical techniques for quantifying (and maximizing) our pre-
cision. In this next set of three chapters focusing on planning exper-
iments, we will develop our toolkit for designing the measures (this
chapter), design manipulations (Chapter 9), and sampling (Chapter 10)
strategies that will allow us to create and evaluate experiments. These
chapters form a core part of our approach to “experimentology”: a set
of decisions to REDUCE BIAS, maximize MEASUREMENT PRECISION, and
assess GENERALIZABILITY. Let’s begin with measurement.
Throughout the history of science, advances in measurement have gone
hand in hand with advances in knowledge.1 Telescopes revolutionized
astronomy, microscopes revolutionized biology, and patch clamping
revolutionized physiology. But measurement isn’t easy. Even the
humble thermometer, allowing reliable measurement of temperature,
required centuries of painstaking effort to perfect (Chang 2004). Psy-
chology and the behavioral sciences are no different – we need reliable
instruments to measure the things we care about. In this next section
of the book, we’re going to discuss the challenges of measurement in
psychology, and the properties that distinguish good instruments from
bad.
What does it mean to measure something? Intuitively, we know that a
ruler measures the quantity of length, and a scale measures the quantity
of mass (Kisch 1965). As we discussed in Chapter 2, those quantities are
latent (unobserved). Individual measurements, in contrast, aremanifest:
they are observable to us. What does it mean tomeasure a psychological
construct – a hypothesized theoretical quantity inside the head?
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2 Is reliability the same as precision?
Yes, more or less. Confusingly, different
fields call these concepts different things
(there’s a helpful table of these names
in Brandmaier et al. 2018). Here we’ll
talk about reliability as a property of
instruments specifically while using the
term precision to talk about themeasure-
ments themselves.

3 We are also going to talk in Chapter 9
about the validity of manipulations. The
way you identify a causal effect on some
measure is by operationalizing some con-
struct as well. To identify causal effects,
we must link a particular construct of
interest to something we can concretely
manipulate in an experiment, like the
stimuli or instructions.

We first have to keep in mind that not every measure is equally precise.
This point is obvious when you think about physical measurement in-
struments: a caliper will give you amuchmore precise estimate of thick-
ness than a ruler will. One way to see that the measurement is more
precise is by repeating it a bunch of times. The measurements from the
caliper will likely be more similar to one another, reflecting the fact that
the amount of error in each individual measurement is smaller. We can
do the same thing with a psychological measurement – repeat and assess
variation – though as we’ll see below it’s a little trickier. Measurement
instruments that have less error are called more reliable instruments.2

Second, psychological measurements do not directly reflect latent the-
oretical constructs of interest, quantities like happiness, intelligence, or
language processing ability. And unlike quantities like length and mass,
there is often disagreement in psychology about what the right theoret-
ical quantities are. Thus, we have to measure an observable behavior –
our operationalization of the construct – and then make an argument
about how the measure relates to a proposed construct of interest (and
sometimes whether the construct really exists at all!). This argument is
about the validity of our measurements.3

These two concepts, reliability and validity, provide a conceptual toolkit
for assessing a psychological measurement and how well it serves the
researcher’s goal.

8.1 Reliability
Reliability is a way of describing the extent to which a measure yields
signal relative to noise. Intuitively, if there’s less noise, then there will be
more similarity between different measurements of the same quantity,
illustrated in Figure 8.1 as a tighter grouping of points on the bulls-eye.
But how do we measure signal and noise?

Figure 8.1: Reliability and validity visu-
alized. The reliability of an instrument is
its expected precision. The bias of mea-
surements from an instrument also pro-
vide a metaphor for its validity.
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CASE STUDY

A reliable and valid measure of children’s vocabulary
Anyone who has worked with little children, or had children of their own, can attest to how variable their early
language is. Some children speak clearly and produce long sentences from an early age, while others struggle; this
variation appears to be linked to later school outcomes (Marchman and Fernald 2008). Thus, there aremany reasons
why you’d want to make precise measurements of children’s early language ability as a latent construct of interest.
Because bringing children into a lab can be expensive, one popular alternative option for measuring child language
is the MacArthur Bates Communicative Development Inventory (CDI for short), a form which asks parents to
mark words that their child says or understands. CDI forms are basically long checklists of words. But is parent
report a reliable or valid measure of children’s early language?

Figure 8.2: Longitudinal (test-retest) correlations between a child’s score on one administration of the CDI and another one
several months later. Based on Frank et al. (2021).

As we’ll see below, one way to measure the reliability of the CDI to compute the correlation between two different
administrations of the form for the same child. Unfortunately, this analysis has one issue: the longer you wait
between observations the more the child has changed! Figure 8.2 displays these correlations for two CDIs, showing
how correlations start off high and drop off as the gap between observations increases (Frank et al. 2021).
Given that CDI forms are relatively reliable instruments, are they valid? That is, do they really measure the con-
struct of interest, namely children’s early language ability? Bornstein and Haynes (1998) collected many different
measures of children’s language – including the ELI (an early CDI form) and other “gold standard” measures
like transcribed samples of children’s speech. CDI scores were highly correlated with all the different measures,
suggesting that the CDI was a valid measure of the construct.
The combination of reliability and validity evidence suggests that CDIs are a useful (and relatively inexpensive
source) of data about children’s early language, and indeed they have become one of the most common assessments
for this age group!
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Figure 8.3: Computing the coefficient
of variation (CV).

8.1.1 Measurement scales
In the physical sciences, it’s common to measure the precision of an
instrument using its coefficient of variation (Brandmaier et al. 2018):

𝐶𝑉 = 𝜎𝑤
𝜇𝑤

where 𝜎𝑤 is the standard deviation of the measurements within an in-
dividual and 𝜇𝑤 is the mean of those measurements (Figure 8.3).
Imagine we measure the height of a person five times, resulting in mea-
surements of 171cm, 172cm, 171cm, 173cm, and 172cm. These are the
combination of the person’s true height (we assume they have one!) and
somemeasurement error. Now we can use these measurements to com-
pute the coefficient of variation, which is 0.005, suggesting very limited
variability relative to the overall quantity being measured. Why can’t
we just do this same thing with psychological measurements?
Thinking about this question takes us on a detour through the differ-
ent kinds of measurement scales used in psychological research (Stevens
1946). The height measurements in our example are on what is known
as a ratio scale: a scale in which numerical measurements are equally
spaced and on which there is a true zero point. These scales are com-
mon for physical quantities but somewhat less frequent in psychology
(with reaction times as a notable exception). More common are interval
scales, in which there is no true zero point. For example, IQ (and other
standardized scores) are intended to capture interval variation on some
dimension but 0 is meaningless – an IQ of 0 does not correspond to any
particular interpretation.
Ordinal scales are also often used. These are scales that are ordered but
are not necessarily spaced equally. For example, levels of educational
achievement (“Elementary”, “High school”, “Some college”, “Col-
lege”, “Graduate school”) are ordered, but there is no sense in which
“High school” is as far from “Elementary” as “Graduate school” is
from “College.” The last type in Stevens’ hierarchy is nominal scales, in
which no ordering is possible either. For example, race is an unordered
scale in which multiple categories are present but there is no inherent
ordering of these categories. The hierarchy is shown in Table 8.1.

Table 8.1: Scale types and their associated operations and statistics (Stevens 1946).

Scale Definition Operations Statistics
Nominal Unordered list Equality Mode
Ordinal Ordered list Greater than or less than Median
Interval Numerical Equality of intervals Mean, SD
Ratio Numerical & zero. Equality of ratios Coefficient of variation
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4 You might be tempted to think that
“number of correct answers” is a ratio
variable – but is zero really meaningful?
Does it truly correspond to “no math
knowledge” or is it just a stand-in for
“less math knowledge than this test re-
quires”?

It can actually be shown in a suitably
rigorous sense that ratio and interval
scales (and another lying in between)
are the only scales possible for the real
numbers (Narens and Luce 1986).

Critically, different summary measures work for each scale type. If you
have an unordered list like a list of options for a question about race on
a survey, you can present the modal response (the most likely one). It
doesn’t even make sense to think about what the median was – there’s
no ordering! For ordered levels of education, a median is possible but
you can’t compute a mean. And for interval variables like “number of
correct answers on a math test” you can compute a mean and a standard
deviation.4

Now we’re ready to answer our initial question about why we can’t
quantify reliability using the coefficient of variation. Unless you have a
ratio scale with a true zero, you can’t compute a coefficient of variation.
Think about it for IQ scores: currently, by convention, standardized IQ
scores are set to have a mean of 100. If we tested someone multiple
times and found the standard deviation of their test scores was 4 points,
then we could estimate the precision of their measurements as “CV” of
4/100 = .04. But since IQ of 0 isn’t meaningful, we could just set the
mean IQ for the population to 200. Our test would be the same, and
so the CV would be 4/200 = .02. On that logic we just doubled the
precision of our measurements by rescaling the test! That doesn’t make
any sense.

 DEPTH

Early controversies over psychological measurement
“Psychology cannot attain the certainty and exactness of the physical sciences, unless it rests on a
foundation of […] measurement” (Cattel 1890).

It is no coincidence that the founders of experimental psychology were obsessed with measurement (Heidelberger
2004). It was viewed as the primary obstacle facing psychology on its road to becoming a legitimate quantitative
science. For example, one of the final pieces written by Hermann von Helmholtz (Wilhelm Wundt’s doctoral
advisor), was a 1887 philosophical treatise entitled “Zahlen und Messen” (“Counting and Measuring,” see Darrigol
2003). In the same year, Fechner (1987) explicitly grappled with the foundations of measurement in “Uber die
psychischen Massprincipien” (“On Psychic Measurement Principles”).
Many of the early debates over measurement revolved around the emerging area of psychophysics, the problem of
relating objective, physical stimuli (e.g. light, sound, pressure) to the subjective sensations they produce in the mind.
For example, Fechner (1860) was interested in a quantity called the “just noticeable difference”, the smallest change
in a stimulus that can be discriminated by our senses. He argued for a lawful (logarithmic) relationship: a logarith-
mic change in the intensity of, say, brightness corresponded to a linear change in the intensity people reported (up
to some constant). In other words, sensation was measurable via instruments like just noticeable difference.
It may be surprising to modern ears that the basic claim of measurability was controversial, even if the precise form
of the psychophysical function would continue to be debated. But this claim led to a deeply rancorous debate,
culminating with the so-called Ferguson Committee, formed by the British Association for the Advancement of
Science in 1932 to investigate whether such psychophysical procedures could count as quantitative ‘measurements’
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of anything at all (Moscati 2018). It was unable to reach a conclusion, with physicists and psychologists deadlocked:

Having found that individual sensations have an order, they [some psychologists] assume that they are
measurable. Having travestied physical measurement in order to justify that assumption, they assume
that their sensation intensities will be related to stimuli by numerical laws […] which, if they mean
anything, are certainly false. (Ferguson et al. 1940)

The heart of the disagreement was rooted in the classical definition of quantity requiring strictly additive structure.
An attribute was only consideredmeasurable in light of ameaningful concatenation operation. For example, weight
was a measurable attribute because putting a bag of three rocks on a scale yields the same number as putting each of
the three rocks on separate scales and then summing up those numbers (in philosophy of science, attributes with this
concatenation property are known as “extensive” attributes, as opposed to “intensive” ones). Norman Campbell,
one of the most prominent members of the Ferguson Committee, had recently defined fundamental measurement in
this way (e.g., Campbell 1928), contrasting it with derived measurement, which involved computing some function
based on one or more fundamental measures. According to the physicists on the Ferguson Committee, measuring
mental sensations was impossible because they could never be grounded in any fundamental scale with this kind of
additive operation. It just didn’t make sense to break up people’s sensations into parts the way we would weights or
lengths: they didn’t come in “amounts” or “quantities” that could be combined (Cattell 1962). Even the intuitive
additive logic of Donders (1868/1969)’s “method of subtraction” for measuring the speed of mental processes was
viewed skeptically on the same grounds by the time of the committee (e.g., in an early textbook, Woodworth
(1938) claimed “we cannot break up the reaction into successive acts and obtain the time for each act.”)
The primary target of the Ferguson Committee’s investigation was the psychologist S. S. Stevens, who had claimed
to measure the sensation of loudness using psychophysical instruments. Exiled from classical frameworks of mea-
surement, he went about developing an alternative “operational” framework (Stevens 1946), where the classical
ratio scale recognized by physicists was only one of several ways of assigning numbers to things (see Table 8.1 above).
Stevens’ framework quickly spread, leading to an explosion of proposed measures. However, operationalism re-
mains controversial outside psychology (Michell 1999). The most extreme version of Steven’s stance (“measure-
ment is the assignment of numerals to objects or events according to rule”) permits researchers to define constructs
operationally in terms of a measure (Hardcastle 1995). For example, one may say that the construct of intelligence
is simply whatever it is that IQ measures. It is then left up to the researcher to decide which scale type their proposed
measure should belong to.
In Chapter 2, we outlined a somewhat different view, closer to a kind of constructive realism (Giere 2004; Put-
nam 2000). Psychological constructs like happiness are taken to exist independent of any given operationalization,
putting us on firmer ground to debate the pros and cons associated with different ways of measuring the same
construct. In other words, we are not free to assign numbers however we like. Whether a particular construct or
quantity is measurable on a particular scale should be treated as an empirical question.
The next major breakthrough in measurement theory emerged with the birth of mathematical psychology in the
1960s, which aimed to put psychological measurement onmore rigorous foundations. This effort culminated in the
three-volume Foundations of Measurement series (Krantz et al. 1971; Suppes et al. 1989; Robert Duncan Luce et
al. 1990), which has become the canonical text for every psychology student seeking to understand measurement
in the non-physical sciences. One of the key breakthroughs was to shift the burden from measuring (additive)
constructs themselves to measuring (additive) effects of constructs in conjunction with one another:

When no natural concatenation operation exists, one should try to discover a way to measure factors
and responses such that the ‘effects’ of different factors are additive. (R. Duncan Luce and Tukey
1964).

This modern viewpoint broadly informs the view we describe here.
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5 The approach we use to introduce this
set of ideas is called classical test the-
ory. There are other – more modern –
alternative approaches, but CTT (as it’s
called) is a good starting point for think-
ing through the concepts.

8.1.1 Measuring reliability
So then how do we measure signal and noise when we don’t have a true
zero? We can still look at the variation between repeated measurement,
but rather than comparing that variation between measurements to the
mean, we can compare it to some other kind of variation, for exam-
ple, variation between people. In what follows, we’ll discuss reliability
on interval scales, but many of the same tools have been developed for
ordinal and nominal scales.
Imagine that you are developing an instrument to measure some cogni-
tive ability. We assume that every participant has a true ability, 𝑡, just
the same way that they have a true height in the example above. Ev-
ery time we measure this true ability with our instrument, however, it
gets messed up by some measurement error. Let’s specify that error is
normally distributed with a mean of zero – so it doesn’t bias the mea-
surements, it just adds noise. The result is our observed score, 𝑜.5

Taking this approach, we could define a relative version of the coeffi-
cient of variation. The idea is that the reliability of a measurement is
the amount of variance attributable to the true score variance (signal),
rather than the observed score variance (which includes noise). If 𝜎2

𝑡 is
the variance of the true scores and 𝜎2

𝑜 is the variance of the observed
scores, then this ratio is:

𝑅 = 𝜎2
𝑡

𝜎2𝑜
.

When noise is high, then the denominator is going to be big and 𝑅 will
go down to 0; when noise is low, the numerator and the denominator
will be almost the same and 𝑅 will approach 1.
This all sounds great, except for one problem: we can’t compute re-
liability using this formula without knowing the true scores and their
variance. But if we did, we wouldn’t need to measure anything at all!
There are two main approaches to computing reliability from data.
Each of them makes an assumption that lets you circumvent the
fundamental issue that we only have access to observed scores and not
true scores. Let’s think these through in the context of a math test.
Test-retest reliability. Imagine you have two parallel versions of your
math test that are the same difficulty. Hence, you think a student’s score
on either one will reflect the same true score, modulo some noise. In
that case, you can use these two sets of observed scores (𝑜1 and 𝑜2) to
compute the reliability of the instrument by simply computing the cor-
relation between them (𝜌𝑜1,𝑜2

). The logic is that, if both variants reflect
the same true score, then the shared variance (covariance in the sense
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Figure 8.4: Computing test-retest relia-
bility.
6 The problem is that each half is…
half as long as the original instrument.
To get around this, there is a correction
called the Spearman-Brown correction
that can be applied to estimate the ex-
pected correlation for the full-length in-
strument. You also want to make sure
that the test doesn’t get harder from the
beginning to the end. If it does, you may
want to use the even-numbered and odd-
numbered questions as the two parallel
versions.

of Chapter 5) between them is just 𝜎2
𝑡 , the true score variance, which

is the variable that we wanted but didn’t have. Test-retest reliability is
thus a very convenient way to measure reliability (Figure 8.4).
Internal reliability. If you don’t have two parallel versions of the test, or
you can’t give the test twice for whatever reason, then you have another
option. Assuming you havemultiple questions on yourmath test (which
is a good idea!), then you can split the test in pieces and treat the scores
from each of these sub-parts as parallel versions. The simplest way to
do this is to split the instrument in half and compute the correlation
between participants’ scores on the two halves – this quantity is called
split half reliability.6

Another method for computing the internal reliability (the consistency
of a test) is to treat each test item as a sub-instrument and compute
the average split-half correlation over all splits. This method yields the
statistic Cronbach’s 𝛼 (“alpha”). 𝛼 is a widely reported statistic, but it
is also widely misinterpreted (Sijtsma 2009). First, it is actually a lower
bound on reliability rather than a good estimate of reliability itself. And
second, it is often misinterpreted as evidence that an instrument yields
scores that are “internally consistent,” which it does not; it’s not an ac-
curate summary of dimensionality. 𝛼 is a standard statistic, but it should
be used with caution.
One final note: these tools often get used for observers’ ratings of the
same stimulus (inter-rater or inter-annotator reliability), say for exam-
ple when you have two coders rate how aggressive a person seems in a
video. The most common measure of inter-annotator agreement is a
categorical measure called Cohen’s 𝜅 (“kappa”), for categorical agree-
ment, but you can use intra-class correlation coefficients (see Depth box
below) for continuous data as well as many other measures.

 DEPTH

Reliability paradoxes!
There’s a major issue with calculating reliabilities using the approaches we described here: because reliability is
defined as a ratio of two measures of variation, it will always be relative to the variation in the sample. So if a
sample has less variability, reliability will decrease!
One way to define reliability formally is by using the intra-class correlation coefficient (ICC):

𝐼𝐶𝐶 = 𝜎2
𝑏

𝜎2𝑤 + 𝜎2
𝑏

where 𝜎2
𝑤 is the within-subject variance in measurements and 𝜎2

𝑏 is the between-subject variance in the measure-
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7 Even though 𝛼 is a theoretical lower
bound on reliability, in practice, test-
retest accuracy often ends up lower than
𝛼 because it incorporates all these other
sources of variation.

ments. (The denominator of the ICC comes from partitioning the total observed variance 𝜎2
𝑜 in the reliability

formula above).
So now instead of comparing variation to the mean, we’re comparing variation on one dimension (between person)
to total variation (within and between person). ICCs are tricky and there are several different flavors available
depending on the structure of your data and what you’re trying to do with them. McGraw and Wong (1996) and
Gwet (2014) provide extensive guidance on how to compute and interpret this statistic in different situations.
Let’s think about the CDI data in our case study, which showed high reliability. Now imagine we restricted our
sample to only change scores between 16 – 18-month-olds (our prior sample had 16 – 30-month-olds). Within
this more restricted subset, overall vocabularies would be lower and more similar to one another, and so the average
amount of change within a child (𝜎𝑤) would be larger relative to the differences between children (𝜎𝑏). That would
make our reliability go down, even though we would be computing it on a subset of the exact same data.
That doesn’t sound so bad. But we can construct a much more worrisome version of the same problem. Say we are
very sloppy in our administration of the CDI and create lots of between-participants variability, perhaps by giving
different instructions to different families. This practice will actually increase our estimate of split-half reliability
(by increasing 𝜎𝑏). While the within-participant variability will remain the same, the between-participant vari-
ability will go up! You could call this a “reliability paradox” – sloppier data collection can actually lead to higher
reliabilities.
We need to be sensitive to the sources of variability we’re quantifying reliability over – both the numerator and the
denominator. If we’re computing split-half reliabilities, typically we’re looking at variability across test questions
(from some question bank) vs. across individuals (from some population). Both of these sampling decisions affect
reliability – if the population is more variable or the questions are less variable, we’ll get higher reliability. In sum,
reliability is relative: reliability measures depend on the circumstances in which they are computed.

8.1.1 Practical advice for computing reliability
If you don’t know the reliability of your measures for an experiment,
you risk wasting your and your participants’ time. Ignorance is not bliss.
A higher reliability measure will lead to more precise measurements of
a causal effect of interest and hence smaller required sample sizes.
Test-retest reliability is generally the most conservative practical mea-
sure of reliability. Test-retest estimates include not only measurement
error but also participants’ state variation across different testing sessions
and variance due to differences between versions of your instrument.
These real-world quantities are absent from internal reliability estimates,
which may make you erroneously think that there is more signal present
in your instrument than there is.7 It’s hard work to measure test-retest
reliability estimates, in part because you need two different versions of a
test (to avoid memory effects). If you plan on using an instrument more
than once or twice, though, it will likely be worthwhile!
Finally, if you have multiple measurement items as part of your instru-
ment, make sure you evaluate how they contribute to the reliability
of the instrument. Perhaps you have several questions in a survey that
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you’d like to use to measure the same construct; perhaps multiple ex-
perimental vignettes that vary in content or difficulty. Some of these
items may not contribute to your instrument’s reliability – and some
may even detract. At a bare minimum, you should always visualize the
distribution of responses across items to scan for floor and ceiling effects
– when items always yield responses bunched at the bottom or top of
the scale, limiting their usefulness – and take a look at whether there
are particular items on which items do not relate to the others.
If you are thinking about developing an instrument that you use repeat-
edly, it may be useful to use more sophisticated psychometric models
to estimate the dimensionality of responses on your instrument as well
as the properties of the individual items. If your items have binary an-
swers, like test questions, then item response theory is a good place to
start (Embretson and Reise 2013). If your items are more like ratings
on a continuous (interval or ratio) scale, then you may want to look at
factor analysis and related methods (Furr 2021).

 ACCIDENT REPORT

Wasted effort
Low-reliability measures limit your ability to detect correlations between measurements. Mike spent several fruit-
less months in graduate school running dozens of participants through batteries of language processing tasks and
correlating the results across tasks. Every time data collection finished, one or the other (spurious) correlation
would show up in the data analysis. Something was always correlated with something else. Thankfully, he would
always attempt to replicate the correlation in a new sample – and in that next dataset, the correlation we were
trying to replicate would be null but another (again likely spurious) correlation would show up.
This exercise was a waste of time because most of the tasks were of such low reliability that, even had they been
highly correlatedwith one another, relationshipwould have been almost impossible to detectwithout a huge sample
size. (It also would have been helpful if someone had mentioned multiplicity corrections (Chapter 6) to him.)
One rule of thumb that’s helpful for individual difference designs of this sort is that the maximal correlation that
can be observed between two variables 𝑥 and 𝑦 is the square root of the product of their reliabilities: √𝑟𝑥𝑟𝑦 . So if
you have two measures that are reliable at .25, the maximal measured correlation between them is .25 as well! This
kind of method is now frequently used in cognitive neuroscience (and other fields as well) to compute the so-called
noise ceiling for a measure: the maximum amount of signal that in principle could be predicted (Lage-Castellanos
et al. 2019). If your sample size is too small to detect correlations at the noise ceiling (see Chapter 10), then the
study is not worth doing.

8.2 Validity
In Chapter 2, we talked about the process of theory building as a process
of describing the relationships between constructs. But for the theory
to be tested, the constructs must be measured so that you can test the
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8 Some authors have treated “validity”
as a broader notion that can include,
for example, statistical issues (Shadish,
Cook, and Campbell 2002). The sense
of validity that we are interested in here
is a bit more specific. We focus on con-
struct validity, the relationship between
the measure and the construct.
9 This metaphor is a good rough guide
but it doesn’t distinguish an instrument
that is systematically biased (for exam-
ple, by estimating scores too low for one
group) and one that is invalid (because it
measures the wrong construct).

10 Often this concept is described as be-
ing relevant to the validity of a manipu-
lation also, e.g. when the manipulation
of the construct is confounded and some
other psychological variable is manipu-
lated as well. We discuss internal validity
further in Chapter 9.

relationships between them! Measurement and measure construction
is therefore intimately related to theory construction, and the notion of
validity is central.8

A valid instrument measures the construct of interest. In Figure 8.1,
invalidity is pictured as bias – the holes in the target are tightly grouped
but in the wrong place.9 How can you tell if a measure is valid, given
that the construct of interest is unobserved? There is no single test of the
validity of a measure (Cronbach and Meehl 1955). Rather, the measure
is valid if there is evidence that fits into the broader theory as it relates
to the specific construct it is supposed to be measuring. For example, it
should be strongly related to other measures of the construct, but not as
related to measures of different constructs.
How do you establish that a measure fits into the broader theory? Va-
lidity of a measure is typically established via an argument that calls on
different sources of support (Kane 1992). Here are some of the ways
that you might support the relationship between a measure and a con-
struct:

– Face validity: The measure looks like the construct, such that in-
tuitively it is reasonable that it measures the construct. Face valid-
ity is a relatively weak source of evidence for validity, since it re-
lies primarily on pre-theoretic intuitions rather than any quantita-
tive assessment. For example, reaction time is typically correlated
with intelligence test results (e.g., Jensen and Munro 1979), but
does not appear to be a face-valid measure of intelligence in that
simply being fast doesn’t accord with our intuition about what it
means to be intelligent!

– Ecological validity: The measure relates to the context of
people’s lives. For example, a rating of a child’s behavioral
self-control in the classroom is a more ecologically valid measure
of executive function than a reaction-time task administered in
a lab context. Ecological validity arguments can be made on the
basis of the experimental task, the stimuli, and the general setting
of the experiment (Schmuckler 2001). Researchers differ in how
much weight they assign to ecological validity based on their
goals and their theoretical orientation.

– Internal validity: Usually used negatively. A “challenge to inter-
nal validity” is a description of a case where the measure is ad-
ministered in such a way as to weaken the relationship between
measure and construct. For example, if later items on a math test
showed lower performance due to test-taker’s fatigue rather than
lower knowledge of the concepts, the test might have an internal
validity issue.10
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11 This idea of convergent validity re-
lates to the idea of holism we described
in Chapter 2. A measure is valid if it
relates to other valid measures, which
themselves are only valid if the first one
is! The measures are valid because the
theory works, and the theory works be-
cause the measures are valid. This circu-
larity is a difficult but perhaps unavoid-
able part of constructing psychological
theories (see the above Depth Box on
the history of measurement). We don’t
ever have an objective starting point for
the study of the human mind.

– Convergent validity: The classic strategy for showing validity is
to show that a measure relates (usually, correlates) with other pu-
tative measures of the same construct. When these relationships
are measured concurrently, this is sometimes called concurrent
validity. As we mentioned in Chapter 2, self-reports of happi-
ness relate to independent ratings by friends and family, suggest-
ing that both measure the same underlying construct (Sandvik,
Diener, and Seidlitz 1993).11

– Predictive validity. If the measure predicts other later measures
of the construct, or related outcomes that might be of broader
significance. Predictive validity is often used in lifespan and de-
velopmental studies where it is particularly prized for a measure
to be able to predict meaningful life outcomes such as educational
success in the future. For example, classroom self-control rat-
ings (among other measures) appear strongly predictive of later
life health and wealth outcomes (Moffitt et al. 2011).

– Divergent validity. If the measure can be shown to be distinct
from measure(s) of a different construct, this evidence can help
establish that the measure is specifically linked to the target con-
struct. For example, measures of happiness (specifically, life satis-
faction) can be distinguished frommeasures of optimism aswell as
both positive and negative affect, suggesting that these are distinct
constructs (Lucas, Diener, and Suh 1996).

8.2.1 Validity arguments in practice
Let’s take a look at how we might make an argument about the validity
of the CDI, the vocabulary instrument from our case study.
First, the CDI is face valid – it is clearly about early language ability. In
contrast, even though a child’s height would likely be correlated with
their early language ability, we should be skeptical of this measure due
to its lack of face validity. In addition, the CDI shows good convergent
and predictive validity. Concurrently, the CDI correlates well with evi-
dence from transcripts of children’s actual speech and from standardized
language assessments (as discussed in the case study above). And predic-
tively, CDI scores at age 2 relate to reading scores during elementary
school (Marchman and Fernald 2008).
On the other hand, users of the CDI must avoid challenges to the in-
ternal validity of the data they collect. For example, some CDI data
are compromised by confusing instructions or poor data collection pro-
cesses (Frank et al. 2021). Further, advocates and critics of the CDI ar-
gue about its ecological validity. There is something quite ecologically
valid about asking parents and caregivers – who are experts on their
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own child – to report on their child’s abilities. On the other hand, the
actual experience of filling out a structured form estimating language
ability might be more familiar to some families from high education
backgrounds than for others from lower education backgrounds. Thus,
a critic could reasonably say that comparisons of CDI scores across so-
cioeconomic strata would be an invalid usage (Feldman et al. 2000).

8.2.2 Avoid questionable measurement practices!
Experimentalists sometimes have a tendency to make up ad hoc mea-
sures on the fly. It’s fine to invent new measures, but the next step is
to think about what evidence there is that it’s valid! Table 8.2 gives a
set of questions to guide thoughtful reporting of measurement practices
(adapted from Flake and Fried 2020).
Table 8.2: Questions about measurement that every reseacher should answer in their
paper. Adapted from Flake and Fried (2020).

Question Information to Report

What is your construct? Define construct, describe theory and research.
What measure did you use to
operationalize your construct?

Describe measure and justify operationalization.

Did you select your measure
from the literature or create it
from scratch?

Justify measure selection and review evidence on
reliability and validity (or disclose the lack of such
evidence).

Did you modify your measure
during the process?

Describe and justify any modifications; note
whether they occurred before or after data
collection.

How did you quantify your
measure?

Describe decisions underlying the calculation of
scores on the measure; note whether these were
established before or after data collection and
whether they are based on standards from
previous literature.

One big issue to be careful about is that researchers have been known to
modify their scales and their scale scoring practices (say, omitting items
from a survey or rescaling responses) after data collection. This kind of
post-hoc alteration of the measurement instrument can sometimes be
justified by features of the data, but it can also look a lot like 𝑝-hacking!
If researchers modify their measurement strategy after seeing their data,
this decision needs to be disclosed, and it may undermine their statistical
inferences.
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12 Comparing absolute measurements
is a really important trick for “sanity-
checking” your data. If your measure-
ments are very different than the ones
in the paper you’re following up (for ex-
ample, if reaction times are much longer
or shorter, or if accuracies on a test are
much higher or lower), that may be a sig-
nal that something has gone wrong.

 ACCIDENT REPORT

Talk about flexible measurement!
The Competitive Reaction Time Task (CRTT) is a lab-based measure of aggression. Participants are told that they
are playing a reaction-time game against another player and are asked to set the parameters of a noise blast that
will be played to their opponent. Unfortunately, in an analysis of the literature using CRTT, Elson et al. (2014)
found that different papers using the CRTT use dramatically different methods for scoring the task. Sometimes
the analysis focused on the volume of the noise blast and sometimes it focused on the duration. Sometimes these
scores were transformed (via logarithms) or thresholded. Sometimes they were combined into a single score. Elson
was so worried by this flexibility, he created a website, https://flexiblemeasures.com, to document the variation
he observed.
As of 2016, Elson had found 130 papers using the CRTT. And across these papers, he documented an astonishing
157 quantification strategies. One paper reported ten different strategies for extracting numbers from this measure!
More worrisome still, Elson and colleagues found that when they tried out some of these strategies on their own
data, different strategies led to very different effect sizes and levels of statistical significance. They could effectively
make a finding appear bigger or smaller depending on which scoring they chose.
Triangulating a construct through multiple pre-specified measurements can be a good thing. But the issue with
the CRTT analysis was that changes in the measurement strategy appeared to be made in a post hoc, data-driven
way so as to maximize the significance of the experimental manipulation (just like the p-hacking we discussed in
Chapters 3 and 6).
This examination of the use of the CRTT measure has several implications. First, and most troublingly, there
may have been undisclosed flexibility in the analysis of CRTT data across the literature, with investigators taking
advantage of the lack of standardization to try many different analysis variants and report the one most favorable to
their own hypothesis. Second, it is unknown which quantification of CRTT behavior is in fact most reliable and
valid. Since some of these variants are presumably better than others, researchers are effectively “leaving money on
the table” by using suboptimal quantifications. As a consequence, if researchers adopt the CRTT, they find much
less guidance from the literature on what quantification to adopt.

8.3 How to select a good measure?
Ideally you want a measure that is reliable and valid. How do you get
one? An important first principle is to use a pre-existing measure. Per-
haps someone else has done the hard work of compiling evidence on
reliability and validity, and in that case you will most likely want to pig-
gyback on that work. Standardized measures are typically broad in their
application and so the tendency can be to discard these because they are
not tailored for our studies specifically. But the benefits of a standard-
ized measure are substantial. Not only can you justify the measure us-
ing the prior literature, you also have an important index of population
variability by comparing absolute scores to other reports.12

If you don’t use someone else’s measure, you’ll need to make one up
yourself. Most experimenters go down this route at some point, but if

https://flexiblemeasures.com
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13 Some authors differentiate between
“self-report” and “observational” mea-
sures. This distinction seems simple on
its face, but actually gets kind of com-
plicated. Is a facial expression a “self-
report”? Language is not the only way
that people communicate with one an-
other – many actions are intended to be
communicative (Shafto, Goodman, and
Frank 2012).

you do, remember that you will need to figure out how to estimate its
reliability and also how to make an argument for its validity!
We can assign numbers to almost anything people do. We could run
an experiment on children’s exploratory play and count the number of
times they interact with another child (Ross and Lollis 1989), or run an
experiment on aggression where we quantify the amount of hot sauce
participants serve (Lieberman et al. 1999). Yet most of the time we
choose from a relatively small set of operational variables: asking survey
questions, collecting choices and reaction times, and measuring physio-
logical variables like eye-movements. Besides following these conven-
tions, how do we choose the right measurement type for a particular
experiment?
There’s no hard and fast rule about what aspect of behavior to measure,
but here we will focus on two dimensions that can help us organize the
broad space of possiblemeasure targets.13 The first of these is the contin-
uum between simple and complex behaviors. The second is the focus
on explicit, voluntary behaviors vs. implicit or involuntary behaviors.

8.3.1 Simple vs. complex behaviors
Figure 8.5 shows a continuum between simple and complex behaviors.
The simplest measurable behaviors tend to be button presses, e.g.:

– pressing a key to advance to the next word in a word-by-word
self-paced reading study,

– selecting “yes” or “no” in a lexical decision task, and
– making a forced choice between different alternatives to indicate

which has been seen before.

Figure 8.5: Often choosing a measure
can be consolidated into a choice along
a continuum from simple measures that
provide a small amount of information
but are quick and easy to repeat and
those that provide much richer informa-
tion but require more time.

These specific measures – and many more like them – are the bread and
butter of many cognitive psychology studies. Because they are quick
and easy to explain, these tasks can be repeated over many trials. They
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14 When they are not designed with
care, complex, open-ended behaviors
such as verbal interviews can be espe-
cially affected by the experimental bi-
ases that we will describe in Chapter 9,
including for example demand charac-
teristics, in which participants say what
they think experimenters want to hear.
Qualitative interviewmethods can be in-
credibly powerful as a method in their
own right, but they should be deployed
with care as measures for an experimen-
tal intervention.

can also be executed with a wider variety of populations including with
young children and sometimes even with non-human animals with ap-
propriate adaptation. (A further benefit of these paradigms is that they
can yield useful reaction time data, which we discuss further below).
In contrast, a huge range of complex behaviors have been studied by
psychologists, including:

– open-ended verbal interviews;
– written expression, e.g. via handwriting or writing style;
– body movements, including gestures, walking, or dance; and
– drawing or artifact building.

There are many reasons to study these kinds of behaviors. First, the
behaviors themselves may be examples of tasks of interest (e.g., studies
of drawing that seek to understand the origins of artistic expression).
Or, the behavior may stand in for other even more complex behaviors
of interest, as in studies of typing that use this behavior as a proxy for
lexical knowledge (Rumelhart and Norman 1982).
Complex behaviors typically afford a huge variety of different measure-
ment strategies. So any experiment that uses a particular measurement
of a complex behaviorwill typically need to do significantwork up front
to justify the choice of that measurement strategy – e.g., how to quan-
tify dances or gestures or typing errors – and provide some assurance
about its reliability. Further, it is often much more difficult to have
a participant repeat a complex behavior many times under the same
conditions. Imagine asking someone to draw hundreds of sketches as
opposed to pressing a key hundreds of times! Thus, the choice of a
complex behavior is often a choice to forego a large number of simple
trials for a small number of more complex trials.
Complex behaviors can be especially useful to study either at the be-
ginning or the end of a set of experiments. At the beginning of a set of
experiments, they can provide inspiration about the richness of the tar-
get behavior and insight into the many factors that influence it. And at
the end, they can provide an ecologically valid measure to complement
a reliable but more artificial, lab-based behavior.
The more complex the behavior, however, the more it will vary across
individuals and the more environmental and situational factors will af-
fect it. These can be important parts of the phenomenon, but they can
also be nuisances that are difficult to get under experimental control.14
Simple measures are typically easier to use and hence easier to deploy
repeatedly in a set of experiments where you iterate your manipulation
to test a causal theory.
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15 Implicit/explicit is likely more of
a continuum, but one cut-point is
whether the participants’ behavior is
considered intentional: that is, partici-
pants intend to press a key to register a
decision, but they likely do not intend to
react in 300 as opposed to 350 millisec-
onds due to having seen a prime.

16 One way of describing the informa-
tion processing underlying this tradeoff
is given by drift diffusion models, which
allow joint analysis of accuracy and re-
action time (Voss, Nagler, and Lerche
2013). Used appropriately, drift diffu-
sion models can provide a way to re-
move speed-accuracy tradeoffs and ex-
tract more reliable signals from tasks
where accuracy and reaction time are
both measured (see Johnson et al. 2017
for an example of DDM on a weapon-
decision task).

8.3.2 Implicit vs. explicit behaviors
A second important dimension of organization for measures is the dif-
ference between implicit and explicit measures. An explicit measure
provides a measurement of a behavior that a participant has conscious
awareness of – e.g., the answer to a question. In contrast, implicit mea-
sures provide measurements of psychological processes that participants
are unable to report (or occasionally, unwilling to).15 Implicit measures,
especially reaction time, have long been argued to reflect internal psy-
chological processes (Donders 1868/1969). They also have been pro-
posed as measures of qualities such as racial bias that participants may
have motivation not to disclose (Greenwald, McGhee, and Schwartz
1998). There are also of course a host of physiological measurements
available. Some of these measure eye-movements, heart rate, or skin
conductance, which can be linked to aspects of cognitive process. Oth-
ers reflect underlying brain activity via the signals associated with MRI,
MEG, NIRS, and EEG measurements. These methods are outside the
scope of this book, though we note that the measurement concerns we
discuss here definitely apply (e.g., Zuo, Xu, and Milham 2019).
Many tasks produce both accuracy and reaction time data. Often these
trade off with one another in a classic speed-accuracy tradeoff : the
faster participants respond, the less accurate they are. For example, to
investigate racial bias in policing, Payne (2001) showed US college stu-
dents a series of pictures of tools and guns, proceeded by a prime of
either a White face or a Black face. In a first study, participants were
faster to identify weapons when primed by a Black face but had similar
accuracies. A second study added a response deadline to speed up judg-
ments: this manipulation resulted in equal reaction times across condi-
tions but greater errors in weapon identification after Black faces. These
studies likely revealed the same phenomenon – some sort of bias to as-
sociate Black faces with weapons – but the design of the task moved
participants along a speed accuracy tradeoff, yielding effects on differ-
ent measures.16

Simple, explicit behaviors are often a good starting point. Work using
these measures – often the least ecologically valid – can be enriched
with implicit measures or measurements of more complex behaviors.

8.4 The temptation to measure lots of things
If one measure is good, shouldn’t two be better? Many experimenters
add multiple measurements to their experiments, reasoning that more
data is better than less. But that’s not always true!
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17 In an entertaining article called
“things I have learned (so far)”, Cohen
(1990) quips that he leans so far in the
direction of large numbers of observa-
tions and small numbers of measures that
some students think his perfect study has
10,000 participants and no measures.
18 As usual, we want to qualify that we
are only talking about randomized ex-
periments here! In observational studies,
often the point is to measure the associa-
tions between multiple measures so you
typically have to include more than one.
Additionally, some of the authors of this
book have advocated formeasuringmul-
tiple outcomes in longitudinal observa-
tional studies, which could reduce inves-
tigator bias, encourage reporting null ef-
fects, enable comparison of effect sizes,
and improve research efficiency (Vander-
Weele, Mathur, and Chen 2020). We’ve
also done plenty of descriptive studies
– these can be very valuable. In a de-
scriptive context, often the goal is to in-
clude as many measures as possible so
as to have a holistic picture of the phe-
nomenon of interest.

19 One caveat to this argument is that
it can sometimes be useful to examine
the effects of a manipulation on different
measures because the measures are im-
portant. For example, you might be in-
terested in whether an educational inter-
vention increased grades and decreased
dropout rates. Both outcome measures
are important and so it is useful to in-
clude both in your study.

Deciding whether to include multiple measures is an aesthetic and prac-
tical issue as well as a scientific one. Throughout this bookwe have been
advocating for a viewpoint in which experiments should be as simple
as possible. For us, the best experiment is one that shows that a simple
and valid manipulation affects a single, reliable and valid measure.17 If
you are tempted to include more than one measure, see if we can talk
you out of it.18

First, make sure that includingmoremeasures doesn’t compromise each
individual measure. This can happen via fatigue or carryover effects.
For example, if a brief attitude manipulation is followed by multiple
questionnaire measures, it is a good bet that there is likely to be “fade-
out” of the effect over time, so it won’t have the same effect on the
first questionnaire as the last one. Further, even if a manipulation has
a long duration effect on participants, survey fatigue may lead to less
meaningful responses to later questions (Herzog and Bachman 1981).
Second, considerwhether you have a strong prediction for eachmeasure,
or whether you’re just looking for more ways to see an effect of your
manipulation. As discussed in Chapter 2, we think of an experiment as
a “bet.” The more measures you add, the more bets you are making
but the less value you are putting on each. In essence, you are “hedging
your bets” and so the success of any one bet is less convincing.
Third, if you include multiple measures in your experiment, you need
to think about how you will interpret inconsistent results. Imagine you
have experimental participants engage in a brief written reflection that
is hypothesized to affect a construct (vs a control writing exercise, say
listing meals). If you include two measures of the construct of inter-
est and one shows a larger effect, what will you conclude? It may be
tempting to assume that the one that shows a larger effect is the “better
measure” but the logic is circular – it’s only better if the manipulation
affected the construct of interest, which is what you were testing in the
first place! Includingmultiplemeasures because you’re uncertain which
one is more related to the construct indulges in this circular logic, since
the experiment often can’t resolve the situation. A much better move
in this case is to do a preliminary study of the reliability and validity
of the two measures so as to be able to select one as the experiment’s
primary endpoint.19

Finally, if you do include multiple measures, selective reporting of sig-
nificant or hypothesis-alignedmeasures becomes a real risk. For this rea-
son, preregistration and transparent reporting of all measures becomes
even more important.
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There are some cases wheremoremeasures are better. Themore expen-
sive the experiment, the less likely it is to be repeated to gather a new
measurement of the effects of the same manipulation. Thus, larger stud-
ies present a stronger rationale for including multiple measures. Clinical
trials often involve interventions that can have effects on many differ-
ent measures; imagine a cancer treatment that might affect mortality
rates, quality of life, tumor growth rates, etc. Further, such trials are ex-
tremely expensive and difficult to repeat. Thus, there is a good reason
for including more measures in such studies.

 DEPTH

Survey measures
Sometimes the easiest way to elicit information from participants is simply to ask. Surveys are an important part of
experimental measurement, so we’ll share a few best practices, primarily derived from Krosnick and Presser (2010).
Treat survey questions as a conversation. The easier your items are to understand, the better. Don’t repeat variations
on the same question unless youwant different answers! Try tomake the order reasonable, for example by grouping
together questions about the same topic and moving from more general to more specific questions. The more you
include “tricky” items the more you invite tricky answers to straightforward questions. One specific kind of tricky
questions are “check” questions that evaluate participant compliance. We’ll talk more in Chapter 12 about various
ways of evaluating compliance and their strengths and weaknesses.
Open-ended survey questions can be quite rich and informative, especially when an appropriate coding (classifi-
cation) scheme is developed in advance and responses are categorized into a relatively small number of types. On
the other hand, they present practical obstacles because they require coding (often by multiple coders to ensure
reliability of the coding). Further, they tend to yield nominal data, which are often less useful for quantitative
theorizing. Open-ended questions are a useful tool to add nuance and color to the interpretation of an experiment.
One common mistake that survey developers make is trying to put too much into one question. Imagine asking
a restaurant-goer for a numerical ranking on the question, “How do you like our food and service?” What if
they loved the food but hated the service, or vice versa – would they choose an intermediate option? Items that
ask about more than one thing at once are known as double-barreled questions. They can confuse and frustrate
participants as well as leading to uninterpretable data.

Figure 8.6: Likert scales based on survey best practices: a bipolar opinion scale with seven points and a unipolar frequency scale
with five points. Both have all points labeled.
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Especially given their ubiquity in commercial survey research, Likert scales – scales with a fixed number of ordered,
numerical response options – are a simple and conventional way of gathering data on attitude and judgment ques-
tions (Figure 8.6). Bipolar scales are those in which the endpoints represent opposites, for example the continuum
between “strongly dislike” and “strongly like.” Unipolar scales have one neutral endpoint, like the continuum
between “no pain” and “very intense pain.” Survey methods research suggests that reliability is maximized when
bipolar scales have seven points and unipolar scales have five. Labeling every point on the scale with verbal labels
is preferable to labeling only the endpoints.
One important question is whether to treat data from Likert scales as ordinal or interval. It’s extremely common
(and convenient) to make the assumption that Likert ratings are interval, allowing the use of standard statistical tools
like means, standard deviations, linear regression, etc. The risk in this practice comes from the possibility that scale
items are not evenly spaced – for example, on a scale labeled “never”,“seldom”, “occasionally”,“often”,“always,”
the distance from “often” to “always” may be larger than the distance from “seldom” to “occasionally.”
In practice, you can choose to use regression variants that are appropriate, e.g. ordinal logistic regression and its
variants, or they can attempt to assess and mitigate the risks of treating the data as interval. If you choose the
second option, it’s definitely a good idea to look carefully at the raw distributions for individual items to see if their
distribution appears approximately normal (see Chapter 15).
Recently some researchers have begun to use “visual analog scales” (or sliders) as a solution. We don’t recommend
these – the distribution of the resulting data is often anchored at the starting point or endpoints (Matejka et al.
2016), and a meta-analysis shows they’re a lot lower than Likert scales in reliability (Krosnick and Presser 2010).
It rarely helps matters to add a “don’t know” or “other” option to survey questions. These are some of a variety
of practices that encourage satisficing, where survey takers give answers that are good enough but don’t reflect
substantial thought about the question. Another behavior that results from satisficing is “straight-lining” – that
is, picking the same option for every question. In general, the best way to prevent straight-lining is to make sur-
veys relatively short, engaging, and well-compensated. The practice of “reverse coding” to make the expected
answers to some questions more negative can block straight-lining, but at the cost of making items more confusing.
Some obvious formatting options can reduce straight-lining as well, for example placing scales further apart or on
subsequent (web) pages.
In sum, survey questions can be a helpful tool for eliciting graded judgments about explicit questions. The best
way to execute them well is to try and make them as clear and easy to answer as possible.

8.5 Chapter summary: Measurement
In olden times, all the psychologists went to the same conferences and
worried about the same things. But then a split formed between differ-
ent groups. Educational psychologists and psychometricians thought
a lot about how different problems on tests had different measurement
properties. They began exploring how to select good and bad items, and
how to figure out people’s ability abstracted away from specific items.
This research led to a profusion of interesting ideas about measurement,
but these ideas rarely percolated into day-to-day practice in other areas
of psychology. For example, cognitive psychologists collected lots of
trials and measured quantities of interest with high precision, but wor-
ried less about measurement validity. Social psychologists spent more
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time worrying about issues of ecological validity in their experiments,
but often used ad hoc scales with poor psychometric properties.
These sociological differences between fields has led to an unfortunate
divergence, where experimentalists often don’t recognize the value of
the conceptual tools developed to aidmeasurement, and so fail to reason
about the reliability and validity of their measures in ways that can help
them make better inferences. As we said in our discussion of reliability,
ignorance is not bliss. Much better to think these choices through!

DISCUSSION QUESTIONS

1. Let’s go back to our example on the relationship between money and happiness from Chapter 1. How many
different kinds of measures of happiness can you come up with? Make a list with at least five.

2. Choose one of your measures of happiness and come up with a validation strategy for it, making reference to at
least three different types of validity. What data collection would this validation effort require?

READINGS

– A classic textbook on psychometrics that introduces the concepts of reliability and validity in a simple and
readable way: Furr, R. M. (2021). Psychometrics: an introduction. SAGE publications.

– A great primer on questionnaire design: Krosnick, J.A. (2018). Improving Question Design to Maximize Reli-
ability and Validity. In: Vannette, D., Krosnick, J. (eds) The Palgrave Handbook of Survey Research. Palgrave
Macmillan, Cham. https://doi.org/10.1007/978-3-319-54395-6_13.

– Introduction to general issues in measurement and why they shouldn’t be ignored: Flake, J. K., & Fried, E. I.
(2020). Measurement schmeasurement: Questionable measurement practices and how to avoid them. Advances
in Methods and Practices in Psychological Science, 3(4), 456-465. https://doi.org/10.1177/2515245920952393.

– An accessible popular book on scientific measurement: Vincent, J. (2022). Beyond Measure: The Hidden History
of Measurement from Cubits to Quantum Constants. W. W. Norton.
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1 This sectionwill draw on our introduc-
tion to causal inference in Chapter 1, so
if you haven’t read that, now’s the time.

9 DESIGN

🍏 LEARNING GOALS

– Describe key elements of experimental design
– Define randomization and counterbalancing strategies for removing confounds
– Discuss strategies to design experiments that are appropriate to the populations of interest

The key thesis of our book is that experiments should be designed to
yield precise and unbiased measurements of a causal effect. But the
causal effect of what? The manipulation! In an experiment we manipu-
late (intervene on) some aspect of the world and measure the effects of
that manipulation. We then compare that measurement to a situation
where the intervention has not occurred.
We refer to different intervention states as conditions of the experiment.
The most common experimental design is the comparison between a
control condition, in which the intervention is not performed, and an
experimental (sometimes called treatment) condition in which the in-
tervention is performed.
Butmany other experimental designs are possible. Inmore complex ex-
periments, manipulations along different dimensions (sometimes called
factors in this context) can be combined. In the first part of the chapter,
we’ll introduce some common experimental designs and the vocabu-
lary for describing them. Our focus here is in identifying designs that
maximize MEASUREMENT PRECISION.
A good experimental measure must be a valid measure of the construct
of interest. The same is true for amanipulation – it must validly relate to
the causal effect of interest. In the second part of the chapter, we’ll dis-
cuss issues of manipulation validity, including both issues of ecological
validity and confounding. We’ll talk about how practices like random-
ization and counterbalancing can help remove nuisance confounds, an
important part of BIAS REDUCTION for experimental designs.1

To preview our general take-home points from this chapter: we think
that your default experiment should manipulate one or two factors –
usually not more – and should manipulate those factors continuously
and within-participants. Although such designs are not always possible,
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they are typically themost likely to yield precise estimates of a particular
effect that can be used to constrain future theorizing. We’ll start by
considering a case study in which a subtle confound led to difficulties
interpreting an experimental result.

CASE STUDY

Automatic theory of mind?
In an early version of our course, student Desmond Ong set out to replicate a thought-provoking finding: both
infants and adults seemed to show evidence of tracking other agents’ belief state, even when it was irrelevant to the
task at hand (Kovács, Téglás, and Endress 2010). In the paradigm, an animated Smurf character would watch as a
self-propelled ball came in and out from behind a screen. At the end of the video, the screen would swing down
and the participant had to respond whether the ball was present or absent. Reaction time for this decision was the
key dependent variable.
The experimental design investigated two factors: whether the participant believed the ball was present or absent
(P+/P-) and whether the animated agent would have believed the ball was present or absent (A+/A-) based on what it
saw. The result was four conditions: P+/A+, P+/A-, P-/A+, and P-/A-. (We could call this a fully crossed design
because each level of one factor was presented with each level of the other).

Figure 9.1: Original data from Kovács, Téglás, and Endress (2010). Error bars show 95% confidence intervals. Based on Phillips
et al. (2015).

Both the original experiments and the replication that Desmond ran showed a significant effect of the agent’s
beliefs on participants’ reaction times, suggesting that what the – totally irrelevant – agent thought about the ball
was leading them to react more or less quickly to the presence of the ball. Figure 9.1 shows the original data
(N=24). But although both studies showed an effect of agent belief, the replication and several variations also
showed a crossover interaction of participant and agent belief. The participants were slower when the agents and
the participants believed that the ball was behind the screen (Figure 9.2). That finding wasn’t consistent with the
theory that tracking inconsistent beliefs slowed down reaction times. If participants were tracking their own beliefs
about the ball and the agent’s, they should have been fastest in the P+/A+ condition, not slower.
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Figure 9.2: Data from a series of replications of Kovács, Téglás, and Endress (2010), including versions on the web (Experiments
1a and 1b) and in lab (Experiment 1c), as well as several variations on the format of responding (Experiments 2 and 3; 2AFC =
two alternative forced choice) and an experiment where a large wall kept the agent from seeing the ball at all (Experiment 4).
“Hits” and “CRs” panels refer to different subsets of trials where participants responded “present” when the ball was present
and “absent” when the ball was absent. Error bars are 95% confidence intervals. Based on Phillips et al. (2015).

A collaborative team working on this paradigm identified a key issue (Phillips et al. 2015). There was a confound
in the experimental design – another factor that varied across conditions besides the target factors. In other words,
something was changing between conditions other than the agent’s and participant’s belief states. The confound
was an attention check (discussed further in Chapter 12): participants had to press a key when the agent left the
scene to show that they were paying attention. This attention check appeared a few seconds later in the videos for
the P+/A+ and P-/A- trials – the ones that yielded the slow reaction times – than it did for the other two. When
the attention check was removed or when its timing was equalized across conditions, reaction time effects were
eliminated, suggesting that the original pattern of findings may have been due to the confound.
If the standard for replication is significance of particular statistical tests at p<.05, then this experiment replicated
successfully. But the effect estimates were inconsistent with the proposed theoretical explanation. A finding can
be replicable without providing support for the underlying theory!
There’s an important caveat to this story. The followup work only revealed that there was a confound in one
particular experimental operationalization, and did not provide evidence against automatic theory of mind in gen-
eral. Indeed, others have suggested that different versions of this paradigm do reveal evidence for theory of mind
processing once the confound is eliminated (El Kaddouri et al. 2020).
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2 Terminology here is hard. In psy-
chology people sometimes say there’s an
independent variable (the manipulation,
which is causally prior and hence “in-
dependent” of other causal influences)
and a dependent variable (the measure,
which causally depends on themanipula-
tion, or so we hypothesize). We find this
terminology to be hard to remember be-
cause the terms are so different from the
actual concepts being described.

Figure 9.3: The 2x2 crossed design used
in Young et al. (2007)

9.1 Experimental designs
Experimental designs are fundamental to many fields; unfortunately the
terminology used to describe them can vary, which can get quite con-
fusing! Here we will mostly describe an experiment as a relationship
between some manipulation(s), in which participants are randomly as-
signed to experimental conditions to estimate effects on some measure.
Factors are the dimensions along which manipulations vary. For exam-
ple, in our case study above, the two factors were participant belief and
agent belief. Another terminology it’s good to be familiar with is the
terms used in Chapters 5–7, which are often used in econometrics and
statistics: treatment (manipulation) and outcome (measure).2

In this section, we’ll discuss key dimensions on which experiments vary:
1) how many factors they incorporate and how these factors are crossed,
2) how many conditions and measures are given to each participant, and
3) if manipulations have discrete levels or fall on a continuous scale.

9.1.1 A two-factor experiment
The classical “design of experiments” framework has as its goal to sep-
arate observed variability in the dependent measure into 1) variability
due to the manipulation(s) and (2) other variability, including measure-
ment error and participant-level variation. This framework maps nicely
onto the statistical framework described in Chapters 5–7. In essence,
this framework models the distribution of the measure using the condi-
tion structure of our experiment as the predictor.
Different experimental designs will allow us to estimate specific effects
more and less effectively. Recall in Chapter 5, we estimated the effect of
our tea/milk order manipulation by a simple subtraction: 𝛽 = 𝜃𝑇 − 𝜃𝐶
(where 𝛽 is the effect estimate, and 𝜃s indicate the estimates for each
condition, treatment 𝑇 and control 𝐶; we called them 𝜃𝑇 and 𝜃𝑀 in
that chapter to denote tea- and milk-first conditions). This logic works
just fine also if there are two distinct treatments in a three condition
experiment: each treatment can be compared to control separately. For
treatment 1, 𝛽𝑇1

= 𝜃𝑇1
− 𝜃𝐶 and 𝛽𝑇2

= 𝜃𝑇2
− 𝜃𝐶 .

This logic is going to get more complicated if we have more than one
distinct factor of interest, though. Let’s look at an example.
Young et al. (2007) were interested in how moral judgments depend
on both the beliefs of actors and the outcomes of their actions. They
presented participants with vignettes in which they learned, for exam-
ple, that Grace visits a chemical factory with her friend and goes to
the coffee break room, where she sees a white powder that she puts in
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3 Neither of these is necessarily a “con-
trol” condition: the goal is simply to
compare these two levels of the factor –
negative and neutral – to estimate the ef-
fect due to the factor.

4 If you’re interested, you can also com-
pute the average or main effect of a par-
ticular factor via the same subtractive
logic. For example, the average effect
of negative belief (−𝐵) vs. a neutral be-
lief (𝐵) can be computed as 𝛽−𝐵 =
(𝜃−𝑂,−𝐵+𝜃𝑂,−𝐵)−(𝜃−𝑂,𝐵+𝜃𝑂,𝐵)

2 .
5 If you’re reading carefully, you might
be thinking that this all sounds like we’re
talking about the analysis of variance
(ANOVA), not about experimental de-
sign per se. These two topics are actually
the same topic! The question is how to
design an experiment so that these statis-
tical models can be used to estimate par-
ticular effects – and combinations of ef-
fects – that we care about. In case you
missed it, we discuss modeling interac-
tions in a regression framework in Chap-
ter 7.

her friend’s coffee. They then manipulated both Grace’s beliefs and the
outcomes of her action following the schema in Figure 9.3. Participants
(N=10) used a four-point Likert scale to rate whether the actions were
morally forbidden (1) or permissible (4). Figure 9.4 shows the data.

Figure 9.4: Moral permissability as a
function of belief and outcome. Re-
sults from Young et al. (2007), anno-
tated with the estimated effects. Sim-
ple effects measure differences between
the individual conditions and the neutral
belief, neutral outcome condition. The
interaction measures the difference be-
tween the predicted sum of the two sim-
ple effects and the actual observed data
for the negative belief, negative outcome
condition.

Young et al.’s design has two factors – belief and outcome – each with
two levels (neutral and negative, noted as 𝐵 and −𝐵 for belief and 𝑂
and −𝑂 for outcome).3 These factors are fully crossed: each level of
each factor is combined with each level of each other.
This fully-crossed design makes it easy for us to estimate quantities of
interest. Let’s say that our reference group (equivalent to the control
group for now) is neutral belief, neutral outcome. Now it’s easy to use
the same kind of subtraction we did before to estimate particular effects
we care about. For example, we can look at the effect of negative belief
in the case of a neutral outcome: 𝛽−𝐵,𝑂 = 𝜃−𝐵,𝑂 − 𝜃𝐵,𝑂. This effect is
shown on the left side of Figure 9.4.
But now there is a complexity: these two simple effects (effects of one
variable at a particular level of another variable) together suggest that the
combined effect 𝛽−𝐵,−𝑂 in the negative belief, negative outcome con-
dition should be equal to the sum of 𝛽−𝐵,𝑂 and 𝛽𝐵,−𝑂.4 As we can see
from Figure 9.4, that’s not right. If it were, the negative belief, negative
outcome condition would be below the minimum possible rating!
Instead, we observe an interaction effect (sometimes called a two-way
interaction when there are two factors): The effect when both factors
are present is different than the sum of the two simple effects. To cap-
ture this effect, we need an interaction term: 𝛽−𝐵,−𝑂.5 In other words,
the effect of negative beliefs (intent) on subjective moral permissibil-
ity depends on whether the action caused harm. Critically, without a
fully-crossed design, we can’t estimate this interaction and we would
have made an incorrect prediction about one condition.
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6 The general formula for 𝑁 factors
with 𝑀 levels each is 𝑀𝑁 − 1.

9.1.2 Generalized factorial designs
Young et al.’s design, in which there are two factors with two levels
each, is called a 2x2 design (pronounced “two by two”). 2x2 designs
are incredibly common and useful, but they are only one of an infinite
variety of such designs that can be constructed.
Say we added a third factor to Young et al.’s design such that Grace ei-
ther feels neutral towards her friend or is angry on that day. If we fully
crossed this third affective factor with the other two (belief and out-
come), we’d have a 2x2x2 design. This design would have eight con-
ditions: (𝐴, 𝐵, 𝑂), (𝐴, 𝐵, −𝑂), (𝐴, −𝐵, 𝑂), (𝐴, −𝐵, −𝑂), (−𝐴, 𝐵, 𝑂),
(−𝐴, 𝐵, −𝑂), (−𝐴, −𝐵, 𝑂), (−𝐴, −𝐵, −𝑂). These conditions would
in turn allow us to estimate both two-way and three-way interactions,
enumerated in Table 9.1.

Table 9.1: Effects in a 2x2x2 design with affect, belief, and outcome as factors.

Effect Term Type
Affect Main effect
Belief Main effect
Outcome Main effect
Affect X Belief 2-way interaction
Affect X Outcome 2-way interaction
Belief X Outcome 2-way interaction
Affect X Belief X Outcome 3-way interaction

Three-way interactions are hard to think about! The affect X belief X
outcome interaction tells you about the difference in moral permissibil-
ity that’s due to all three factors being present as opposed to what you’d
predict on the basis of your estimates of the two-way interactions. In
addition to being hard to think about, higher order interactions tend to
be hard to estimate, because estimating them accurately requires you to
have a stable estimate of all of the lower-order interactions (McClelland
and Judd 1993). For this reason, we recommend against experimental
designs that rely on higher-order interactions unless you are in a situ-
ation where you both have strong predictions about these interactions
and are confident in your ability to estimate them appropriately.
Things can get even more complicated. If you have three factors with
two levels each, as in the example above (Table 9.1), you can estimate 7
total effects of interest. But if you have four factors with two levels each,
you get 15. Four factors with three levels each gets you a horrifying 80
different effects!6 This way lies madness, at least from the perspective of
estimating and interpreting individual effects in a reasonable sample size.
Again, we suggest starting with one- and two-factor designs. There is
a lot to be learned from simple designs that follow good measurement
and sampling practices.



9 DESIGN 170

Figure 9.5: A between-participants de-
sign.

 DEPTH

Estimation strategies for generalized factorial designs
So what should you do if you really do care about four or more factors – in the sense that you want to estimate
their effects and include them in your theory? The simplest strategy is to start your research off by measuring
them independently in a series of single-factor experiments. This kind of setup is natural when there is a single
reference level for each factor of interest, and such experiments can provide a basis for judging which factors are
most important for your outcome and hence which should be prioritized for experiments to estimate interactions.
On the other hand, sometimes there is no reference level for a factor. For example, in the Kovács, Téglás, and
Endress (2010) paradigm, it’s not clear whether a positive or negative belief is the reference level. That’s not a
problem in a fully-crossed design like theirs, but this situation can pose a problem if you have more than two such
factors. Ideally you would want to run independent experiments, but you have to choose some level for all of the
other variables – you can’t just assume that one level is “neutral.”
One solution that lets you computemain effects but not interactions is called aLatin square. Latin squares are a good
solution for three-factor designs, which is the level at which a fully-crossed design typically gets overwhelming. A
Latin square is an 𝑛𝑥𝑛 matrix in which each number occurs exactly once in each row and column, e.g.

⎡⎢
⎣

1 2 3
2 3 1
3 1 2

⎤⎥
⎦

This Latin square for 𝑛 = 3 gives the solution for how to balance factors across a 3x3x3 experiment. The row
number is one factor, the column number is the second factor, and the number in the cell is the third factor. So one
condition would be (1,1,1), the first level of all factors, shown in the upper left cell. Another would be (3,3,2), the
lower right cell. Although a fully-crossed design would require 27 cells to be run, the Latin square has only nine.
Critically, the combinations of factors are balanced across the nine cells so that the average effect of each level of
the three factors can be estimated.
There are also fancier methods available. For example, the literature on optimal experiment design contains meth-
ods for choosing the most informative sequence of experiments to run in order to estimate the parameters in a
model that can include many factors and their interactions (Myung and Pitt 2009). Going down this road typically
means having an implemented computational theory of your domain, but it can be a very productive strategy for
exploring a complex experimental space with many factors.

9.1.1 Between- vs. within-participant designs
Once you know what factor(s) you would like to manipulate in your
experiment, the next step is to consider how these will be presented
to participants, and how that presentation will interact with your mea-
surements. The biggest decision to be made is whether each participant
will experience one level of a factor – a between-participants design –
or whether they will experience multiple levels – awithin-participants
design. Figure 9.5 shows a simple example of between-participants de-
sign with four participants (two assigned to each condition), while Fig-
ure 9.6 shows a within-participants version of the same design.
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Figure 9.6: A within-participants design,
counterbalanced for order (discussion of
counterbalancing below).

7 If you want to estimate how big
an advantage you get from within-
participants data collection, you need
to know how correlated (reliable) your
observations are. One analysis of this
issue (Lakens 2016) suggests that the
key relationship is that 𝑁𝑤𝑖𝑡ℎ𝑖𝑛 =
𝑁𝑏𝑒𝑡𝑤𝑒𝑒𝑛(1 − 𝜌)/2 where 𝜌 is the
correlation between the measurement
of the two conditions within individu-
als. The more correlated they are, the
smaller your within-participants 𝑁 .
8 We tend to think of all of these as
being forms of carry-over effect, and
sometimes use this label as a catch-all
description. Some people also use the
picturesque description “poisoning the
well” (Gelman 2017) – earlier conditions
“ruin” the data for later conditions.

Because people are very variable, the decisionwhether tomeasure a par-
ticular factor between- or within-participants is consequential. Imag-
ine we’re estimating our treatment effect as before, simply by comput-
ing ̂𝛽 = ̂𝜃𝑇 − ̂𝜃𝐶 with each of these estimates from different populations
of participants. In this scenario, our estimate ̂𝛽 contains three compo-
nents: 1) the true differences between 𝜃𝑇 and 𝜃𝐶 , 2) sampling-related
variation in which participants from the population ended up in the
samples for the two conditions, and 3) measurement error. Component
#2 is present because any two samples of participants from a population
will differ in their average on a measure – this is precisely the kind of
sampling variation we saw in the null distributions in Chapter 6.
When our experimental design is within-participants, component #2
is not present, because participants in both conditions are sampled from
the same population. If we get unlucky and all of our participants are
lower than the population mean on our measure, then that unluckiness
affects our conditions equally. The consequences for choosing an ap-
propriate sample size are fairly extreme: Between-participants designs
typically require between two and eight times as many participants as
within-participants designs!7

Given these advantages, why would you consider using a between-
participants design? A within-participants design is simply not possible
for all experiments. For example, consider a medical intervention –
say, a new surgical procedure that is being compared to an established
one. Patients cannot receive two different procedures, and so no
within-participant comparison is possible.
Most manipulations in the behavioral sciences are not so extreme, but
it still may be impractical or inadvisable to deliver multiple conditions.
Greenwald (1976) distinguishes three types of undesirable effects:8

– Practice effects occur when administering the measure or the
treatment will lead to change. Imagine a curriculum intervention
for teaching a math concept – it would be hard to convince a
school to teach the same topic to students twice, and the effect
of the second round of teaching would likely be quite different
than the first!
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9 Even when one factor must be varied
between participants, it is often still pos-
sible to vary others within subjects, lead-
ing to amixed design in which some fac-
tors are between and others within.

10 Caveat: this study used an observa-
tional design, so no causal inference is
possible.

– Sensitization effects occur when seeing two versions of an
intervention mean that you might respond differently to the
second than the first because you have compared them and
noticed the contrast. Consider a study on room lighting – if the
experimenters are constantly changing the lighting, participants
may become aware that lighting is the focus of the study!

– Carry-over effects refer to the case where one treatment might
have a longer-lasting effect than the measurement period. For
example, imagine a study in which one treatment was to make
participants frustrated with an impossible puzzle; if a second con-
dition were given after this first one, participants might still be
frustrated, leading to spill-over of effects between conditions.

All of these issues can lead to real concerns with respect to within-
participant designs. But the desire for effect estimates that are
completely unbiased by these concerns may lead to the overuse of
between-participant designs (Gelman 2017). As we mentioned above,
between-participant designs come at a major cost in terms of power
and precision.
An alternative approach is to acknowledge the possibility of carry-over
type effects and seek to mitigate them. First, you can make sure that the
order of condition is randomized or balanced (see below); and second,
you can analyze carryover effects these within your statistical model (for
example by estimating the interaction of condition and order).9

We summarize the state of affairs from our perspective in Figure 9.7.
We think that within-participant designs should be preferred whenever
possible. This conclusion is also consistent with meta-research we’ve
done on replications from our course: across 176 student replications,
the use of a within-subjects design was the strongest correlate of a suc-
cessful replication (Boyce, Mathur, and Frank 2023).10

Figure 9.7: Pros and cons of between-
vs. within-participant designs. We
recommend within-participant designs
when possible.
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11 We’re talking about multiple trials
with the same measure, not multiple dis-
tinct measures. As we discussed in Chap-
ter 8, we tend to be against measuring
lots of different things in a single exper-
iment – in part because of the concerns
that we’re articulating in this chapter: if
you have time, it’s better to make more
precise measures of what you care about
most. Measuring one thing well is hard
enough. Much better to measure one
thing well than many things badly.

9.1.2 Repeated measurements and experimental items
We just discussed decision-making about whether to administer mul-
tiple manipulations to a single participant. An exactly analogous deci-
sion comes up for measures! And our take-home will be similar: unless
there are specific difficulties that come up, it’s usually a very good idea
to make multiple measurements (via multiple experimental trials) for
each participant in each condition.
You can create a between-participants design where you administer
your manipulation and then measure multiple times. This scenario is
pictured in Figure 9.8). Sometimes this works quite well. For example,
imagine a transcranial magnetic stimulation (TMS) experiment: partic-
ipants receive neural stimulation for a period of time, targeted at a par-
ticular region. Then they perform some measurement task repeatedly
until it wears off. The more times they perform the measurement task,
the better the estimate of whatever effect (when compared to a control
of TMS to another region, say).

Figure 9.8: A between-participants,
repeated-measures design.

Sometimes this design is called a repeated measures design, but termi-
nology here is tricky again. The term “repeated measures” refers to any
experiment where each participant is measured more than once, includ-
ing both between-participants and within-participants designs.11 Our
advice is both to use within-participants designs and to get multiple mea-
surements from each participant.
Why? In the last subsection, we described how variability in our esti-
mates in a between-participants design depend on three components:

1. true condition differences,
2. sampling variation between conditions, and
3. measurement error.

Within-participants designs are good because they don’t include (2).
Repeated measurements reduce (3): the more times you measure, the
lower your measurement error, leading to greater measure reliability!
There are problems with repeating the same measure many times, how-
ever. Some measures can’t be repeated without altering the response.
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12 This estimate is sometimes called a
“difference in differences.” The basic
idea is widely used in the field of econo-
metrics, both in experimental and quasi-
experimental cases (Cunningham 2021).
In practice, though, we recommend us-
ing the pre-treatment measurements as a
covariate in a model-based analysis, not
just doing the simple subtraction.

To take an obvious example, we can’t give the exact same math prob-
lem twice and get two useful measurements of mathematical ability!
The typical solution to this problem is to create multiple items. In the
case of a math assessment, you create multiple problems that you believe
test the same concept but have different numbers or other superficial
characteristics.
Using multiple items for measurement is good for two reasons. First, it
reduces measurement error by allowing responses to be combined across
items. But second, it increases the generalizability of the measurement.
An effect that is consistent across many different items is more likely
to be an effect that can be generalized to a whole class of stimuli – in
precisely the same way that the use of multiple participants can license
generalizations across a population of people (Clark 1973).

Figure 9.9: A between-participants, pre-
post design.

One variation on the repeated measures, between-participants design is
a specific version where the measure is administered both before (pre-)
and after (post-) intervention, as in Figure 9.9. This design is sometimes
known as a pre-post design. It is extremely common in cases where
the intervention is larger-scale and harder to give within-participants,
such as in a field experiment where a policy or curriculum is given to
one sample and not to another. The pre measurements can be used
to subtract out participant-level variability and recover a more precise
estimate of the treatment effect. Recall that our treatment effect in a
pure between participants design is 𝛽 = 𝜃𝑇 − 𝜃𝐶 . In a pre-post design,
we can do better by computing 𝛽 = (𝜃𝑇𝑝𝑜𝑠𝑡

− 𝜃𝑇𝑝𝑟𝑒
) − (𝜃𝐶𝑝𝑜𝑠𝑡

− 𝜃𝐶𝑝𝑟𝑒
).

This equation says “howmuchmore did the treatment group go up than
the control group?12

In sum, within-participants, repeated measurement designs are the
bread and butter of most research in perception, psychophysics, and
cognitive psychology. When both manipulations and measures can be
repeated, these designs afford high measurement precision even with
small sample sizes; they are recommended whenever possible.
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 ACCIDENT REPORT

Stimulus-specific effects
Imagine you’re a psycholinguist who has the hypothesis that nouns are processed faster than verbs. You run an
experiment where you pick out ten verbs and ten nouns, then measure a large sample of participants’ reading time
for each of these. You find strong evidence for the predicted effect and publish a paper on your claim. The only
problem is that, at the same time, someone else has done exactly the same study – with different nouns and verbs –
and published a paper making the opposite claim. When this happens, it is possible that each effect is driven by the
specific experimental items that were chosen, rather than a generalization that is true of nouns and verbs in general
(Clark 1973).
The problem of generalization from sample to population is not new – as we discussed in Chapter 6, we are con-
stantly making this kind of inference with the samples of people that participate in our experiments. Our classic
statistical techniques are designed to quantify our ability to generalize from a sample of participants to a population,
so we recognize that a very small sample size leads to a weak generalization. The exact same issue comes up with
items: a very small sample of experimental items leads to a weak generalization to the population of items.
Item effects are kind of like accidentally finding a group of ten people whose left toes are longer than their right
ones. If you continued to measure the same group’s toes, you could continue to replicate the difference in length.
But that doesn’t mean it’s true of the population as a whole.
This kind of stimulus generalizability problem comes up across many different areas of psychology. In one example,
hundreds of papers were written about a phenomenon called the “risky shift” – in which groups deliberating
about a decision would produce riskier decisions than individuals. Unfortunately, this phenomenon appeared to
be completely driven by the specific choice of vignettes that groups deliberated about, with some stories producing
a risky shift and others producing a more conservative shift (Westfall, Judd, and Kenny 2015).
Another example comes from the memory literature, where a classic paper by Baddeley, Thomson, and Buchanan
(1975) suggested that words that take longer to pronounce (“tycoon” or “morphine”) would be remembered worse
than words that took a shorter amount of time (“ember” or “wicket”) even when they had the same number of
syllables. This effect also appears to be driven by the specific sets of words chosen in the original paper. It’s very
replicable with that particular stimulus set but not generalizable across other sets (Lovatt, Avons, and Masterson
2000).
The implication of these examples is clear: experimenters need to take care in both their experimental design
and analysis to avoid overgeneralizing from their stimuli to a broader construct. Three primary steps can help
experimenters avoid this pitfall:

1. To maximize generality, use samples of experimental items – words, pictures, or vignettes – that are comparable
in size to your samples of participants.

2. When replicating an experiment, consider taking a new sample of items as well as a new sample of participants.
It’s more work to draft new items, but it will lead to more robust conclusions.

3. When experimental items are sampled at random from a broader population, use a statistical model that includes
this sampling process (e.g., mixed effects models with random intercepts for items from Chapter 7).
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13 These methods are extremely com-
mon in perception and psychophysics re-
search, in part because the dimensions
being studied are often continuous in na-
ture. It would be basically impossible
to estimate a participant’s visual contrast
sensitivity without continuously manipu-
lating the contrast of the stimulus!

14 These assumptions are theory-laden,
of course – the choice of a linear func-
tion or a sigmoid is not necessary: noth-
ing guarantees that simple, smooth, or
monotonic functions are the right ones.
The important point is that choosing
a function makes explicit your assump-
tions about the nature of the treatment-
effect relationship.

9.1.1 Discrete and continuous experimental manipulations
Most experimental designs in psychology use discrete condition manip-
ulations: treatment vs. control. In our view, this decision often leads
to a lost opportunity relative to a more continuous manipulation of the
strength of the treatment. The goal of an experiment is to estimate a
causal effect; ideally, this estimate can be generalized to other contexts
and used as a basis for theory. Measuring not just one effect but instead
a dose-response relationship – how the measure changes as the strength
of the manipulation is changed – has a number of benefits in helping to
achieve this goal.

Figure 9.10: Three schematic designs.
(left) Control and treatment are two lev-
els of a nominal variable. (middle) Con-
trol is compared to ordered levels of a
treatment. (right) Treatment level is an
interval or ratio variable such that points
can be connected and a parametric curve
can be extrapolated.Many manipulations can be titrated – that is, their strength can be var-

ied continuously –with a little creativity on the part of an experimenter.
A curriculum intervention can be applied at different levels of intensity,
perhaps by changing the number of sessions in which it is taught. For a
priming manipulation, the frequency or duration of prime stimuli can
be varied. Two stimuli can be morphed continuously so that catego-
rization boundaries can be examined.13

Dose-response designs are useful because they provide insight into
the shape of the function mapping your manipulation to your mea-
sure. Knowing this shape can inform your theoretical understanding!
Consider the examples given in Figure 9.10. If you only have two
conditions in your experiment, then the most you can say about the
relationship between your manipulation and your measure is that
it produces an effect of a particular magnitude; in essence, you are
assuming that condition is a nominal variable. If you have multiple
ordered levels of treatment, you can start to speculate about the nature
of the relationship between treatment and effect magnitude. But if
you can measure the strength of your treatment, then you can begin
to describe the nature of the relationship between the strength of
treatment and strength of effect via a parametric function (e.g., a linear
regression, a sigmoid, or other function.14 These parametric functions
can in turn allow you to generalize from your experiment, making
predictions about what would happen under intervention conditions
that you didn’t measure directly!
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 DEPTH

Tradeoffs associated with titrated designs
Like adults, babies like to look at more interesting, complex stimuli. But do they uniformly prefer complex stim-
uli, or do they search for stimuli at an appropriate level of complexity for their processing abilities? To test this
hypothesis, Brennan, Ames, and Moore (1966) exposed infants in three different age groups (3, 8, and 14 weeks,
N=30) to black and white checkerboard stimuli with three different levels of complexity (2x2, 8x8, and 24x24).
Their findings are plotted in Figure 9.11: the youngest infants preferred the simplest stimuli, while infants at an
intermediate age preferred stimuli of intermediate complexity, and the oldest infants preferred the most complex
stimuli. These findings help to motivate the theory that infants attend preferentially to stimuli that provide appro-
priate learning input for their processing ability (Kidd, Piantadosi, and Aslin 2012).

Figure 9.11: Infants’ looking time, plotted by stimulus complexity and infant age. Data from Brennan, Ames, and Moore (1966).

If your goal is simply to detect whether an effect is zero or non-zero, then dose-response designs do not achieve the
maximum statistical power. For example, if Brennan, Ames, and Moore (1966) simply wanted to achieve maximal
statistical power, they probably should have only tested two age groups and two levels of complexity (say, 3 and
14 week infants and 2x2 and 24x24 checkerboards). That would have been enough to show an interaction of
complexity and age, and their greater resources devoted to these four (as opposed to nine) conditions would mean
more precise estimates of each. But their findings would be less clearly supportive of the view that infants prefer
stimuli that are appropriate to their processing ability, because no group would have preferred an intermediate level
of complexity (as the 9-week-olds apparently did). By seeking to measure intermediate conditions, they provided
a stronger test of their theory.

9.2 Choosing your manipulation
In the previous section, we reviewed a host of common experimental
designs. These designs provide a palette of common options for combin-
ingmanipulations andmeasures. But your choicemust be predicated on
the specific manipulation you are interested in! In this section, we dis-
cuss considerations for experimenters as they design manipulations.
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Figure 9.12: Confounding order and
condition assignment means that you
can’t make an inference about the link
between money and happiness.

In Chapter 8, we talked about measurement validity, but the idea of va-
lidity concept can be applied to manipulations as well as measures. In
particular, a manipulation is valid if it corresponds to the construct that
the experimenter intends to intervene on. In this context, internal va-
lidity threats to manipulations tend to refer to cases where factors in
the experimental design keep the intended manipulation from actually
intervening on the construct of interest. In contrast, external validity
threats to manipulations tend to be cases where the manipulation sim-
ply doesn’t line up well with the construct of interest.

9.2.1 Internal validity threats: Confounding
First and foremost, manipulations must actually manipulate the con-
struct whose causal effect is being estimated. If they actually manipulate
something else instead, they are confounded. This term is used widely
in psychology, but it’s worth revisiting what it means. An experimental
confound is a variable that is created in the course of the experimental
design that is both causally related to the predictor and potentially also
related to the outcome. As such, it is a threat to internal validity.
Let’s go back to our discussion of causal inference in Chapter 1. Our
goal was to use a randomized experiment to estimate the causal effect of
money on happiness. But just giving people money is a big intervention
that involves contact with researchers – contact alone can lead to an ex-
perimental effect even if your manipulation fails. For that reason, many
studies that provide money to participants either give a small amount
of money or a large amount of money. This design keeps researcher
contact consistent in both conditions, implying that the difference in
outcomes between these two conditions should be due to the amount
of money received (unless there are other confounds!).
Suppose you were designing an experiment of this sort and you wanted
to follow our advice and use a within-participants design. You could
measure happiness, give participants $100, wait a month and measure
happiness again, give participants $1000, wait a month, and then mea-
sure happiness for the third time. The trouble is, this design has an
obvious experimental confound (Figure 9.12): the order of the mone-
tary gifts. Maybe happiness just went up more over time, irrespective
of getting the second gift.
If you think your experimental design might have a confound, you
should think about ways to remove it. A first option is elimination,
which we described above: basically, matching a particular variable
across different conditions. This should be our first option for most con-
founds. Unfortunately, in our within-participants money-happiness
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15 In practice, counterbalancing is like
adding an additional factor to your fac-
torial design! But because the factor is a
nuisance factor – basically, one we don’t
care about – we don’t discuss it as a true
condition manipulation. Despite that,
it’s a good practice to check for effects
of these sorts of nuisance factors in your
preliminary analysis. Even though your
average effect won’t be biased by it, it in-
troduces variation that you might want
to understand to interpret other effects
and plan new studies.

Figure 9.13: Confounding between a
specific condition and the time at which
it’s administered can be removed by
counterbalancing or randomization of
order.

study, order is confounded with condition so if we match orders we
have eliminated our condition manipulation entirely.
A second option is counterbalancing, in which we vary a confounding
factor systematically across participants so its average effect is zero across
the whole experiment. In the case of our example, counterbalancing
order across participants is a very safe choice. Some participants get
$100 first and others get $1000 first. That way, you are guaranteed that
the order of conditions will have no effect of the confound on your
average effect. The effect of this counterbalancing is that it “snips” the
causal dependency between condition assignment and later time. We
notate this on our causal diagram with a scissors icon (Figure 9.13).15
Time can still have an effect on happiness, but the effect is independent
from the effect of condition and hence your experiment can still yield
an unbiased estimate of the condition effect.
Counterbalancing gets trickier when you have toomany levels on a vari-
able or multiple confounding variables. In that case, it may not be pos-
sible to do a full counterbalance so that all combinations of these fac-
tors are seen by equal numbers of participants. You may have to rely
on partial counterbalancing schemes or Latin square designs (see Depth
box above; in this case, the Latin squares are used to create orderings of
stimuli such that the position of each treatment in the order is controlled
across two other confounding variables).
A final option, especially useful for such tricky cases is randomization,
that is, choosing which level of a nuisance variable to administer to
the participant via a random choice. Randomization is increasingly
common now that many experimental interventions are delivered by
software. If you can randomize experimental confounds, you probably
should. The only time you really get in trouble with randomization
is when you have a large number of options, a small number of partic-
ipants, or some combination of the two. Then you can end up with
unbalanced levels of the randomized factors. Averaging across many ex-
periments, a lack of balance will come out in the wash, but in a single
experiment, it can lead to unfortunate bias in numbers.
A good approach to thinking through your experimental design is to
walk through the experiment step by step and think about potential con-
founds. For each of these confounds, consider how it might be removed
via counterbalancing or randomization. As our case study shows, con-
founds are not always obvious, especially in complex paradigms. There
is no sure-fire way to ensure that you have spotted every one – some-
times the best way to avoid them is simply to present your candidate
design to a skeptical friend.
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9.2.2 Internal validity threats: Placebo, demand, and expectancy
A second class of important threats to internal validity comes from cases
where the research design is confounded by factors related to how the
manipulation is administered, or even that a manipulation is adminis-
tered. In some cases, these create confounds that can be controlled; in
others they must simply be understood and guarded against. Rosnow
and Rosenthal (1997) called these “artifacts”: systematic errors related
to research on people, conducted by people.
A placebo effect is a positive effect on the measure that comes as a re-
sult of participants’ expectations about a treatment in the context of
research study. The classic example of a placebo is medical: giving an
inactive sugar pill as a “treatment” leads some patients to report a reduc-
tion in whatever symptom they are being treated for. Placebo effects are
a major concern in medical research as well as a fixture in experimental
designs in medicine (Benedetti 2020). The key insight is that treatments
must not simply be compared to a baseline of no treatment but rather
to a baseline in which the psychological aspects of treatment are present
but the “active ingredient” is not. In the terms we have been using, the
experience of receiving a treatment (independent of the content of the
treatment) is a confounding factor when you simply compare treatment
to no treatment conditions.

 ACCIDENT REPORT

Brain training?
Can doing challenging cognitive tasks make you smarter? In the late 2000s and early 2010s, a large industry for
“brain training” emerged. Companies like Lumos Labs, CogMed, BrainHQ, and CogniFit offered games, often
modeled on cognitive psychology tasks, that claimed to lead to gains in memory, attention, and problem solving.
These companies were basing their claims in part on a scientific literature reporting that concerted training on
difficult cognitive tasks could lead to benefits that transferred to other cognitive domains. Among the most influ-
ential of these was a study by Jaeggi et al. (2008). They conducted four experiments in which participants (N=70
across the studies) were assigned to either working memory training via a difficult working memory task (the “dual
N-back”) or a no-training control, with training varying from 8 days all the way to 19 days.
The finding from this study excited a tremendous amount of interest because they reported not only gains in per-
formance on the specific training task but also on a general intelligence task that the participants had trained on.
While the control group’s scores on these tasks improved, presumably just from being tested twice, there was a
condition by time (pre- vs. post) interaction such that the scores of the trained groups (consolidated across all four
training experiments) grew significantly more over the training period (Figure 9.14). These results were interpreted
as supporting transfer – whereby training on one task leads to broader gains – a key goal for “brain training.”
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Figure 9.14: The primary outcome graph for data from Jaeggi et al. (2008).

Careful readers of the original paper noticed signs of analytic flexibility (as discussed in Chapters 3 and 6), however.
For example, the key statistical model was fit to dataset created by post-hoc consolidation of experiments, which
yielded 𝑝 = .025 on the key interaction (Redick et al. 2013). When data were disaggregated, it was clear that the
measures and effects had differed in each of the different sub-experiments (Figure 9.15).

Figure 9.15: The four sub-experiments of Jaeggi et al. (2008), now disaggregated. Panels show 8-, 12-, 17-, and 19-session
studies. Note the different measures: RAPM = Raven’s Advanced Progressive Matrices; BOMAT = Bochumer Matrizentest.
Based on Redick et al. (2013).

Several replications by the same group addressed some of these issues, but still failed to show convincing evidence
of transfer. In particular, there was no comparison to an active control group in which participants did some kind
of alternative activity for the same amount of time (Simons et al. 2016). Such a comparison is critical because a
comparison to a passive control group (a group that does no intervention) confounds participants’ general effort
and involvement in the study with the specific training being used. Successful transfer compared to passive control
could be the result of participants’ involvement, expectations, or motivation rather than brain training per se.
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A careful replication of the training study (N=74) with an active control group and a wide range of outcome
measures failed to find any transfer effects from working-memory training (Redick et al. 2013). A meta-analysis of
23 studies concluded that their findings cast doubt onworkingmemory training for increasing cognitive functioning
(Melby-Lervåg andHulme 2013). In one convincing test of the cognitive transfer theory, a BBC show (“Bang Goes
The Theory”) encouraged its listeners to participate in a six week online brain training study. More than 11,000
listeners completed the pre- and post-tests and at least two training sessions. Neither focused training of planning
and reasoning nor broader training on memory, attention and mathematics led to transfer to untrained tasks.
Placebo effects are one plausible explanation for some positive findings in the brain training literature. Foroughi et
al. (2016) recruited participants to participate via two different advertisements. The first advertised that “numerous
studies have shown working memory training can increase fluid intelligence” (“placebo treatment” group) while
the second simply offered experimental credits (control group). After a single training session, the placebo treatment
group showed significant improvements to their matrix reasoning abilities. Participants in the placebo treatment
group realized gains from training out of proportion with any they could have realized through training. Further,
those participants who responded to the placebo treatment ad tended to endorse statements about the malleability
of intelligence, suggesting that they might have been especially likely to self-select into the intervention.
Summarizing the voluminous literature on brain training, Simons et al. (2016) wrote: “Despite marketing claims
from brain-training companies of ‘proven benefits’… we find the evidence of benefits from cognitive brain training
to be ‘inadequate.’ ”

If placebo effects reflect what participants expect from a treatment then
demand characteristics reflect what participants think experimenters
want and their desire to help the experimenters achieve that goal
(Orne 1962). Demand characteristics are often raised as a reason for
avoiding within-participants designs – if participants become alert to
the presence of an intervention, they may then respond in a way that
they believe is helpful to the experimenter. Typical tools for control-
ling or identifying demand characteristics include using a cover story
to mask the purpose of an experiment, using a debriefing procedure
to probe whether participants typically guessed the purpose of an
experiment, and (perhaps most effectively) creating a control condition
with similar demand characteristics but missing a key component of
the experimental intervention. Note that if you use a cover story
to mask the purpose of your experiment, it’s worth thinking about
whether you are using deception, which can raise ethical issues (see
Chapter 4). Certainly you should be sure to debrief participants about
the true function of the experiment!
The final entry into this list of internal validity threats is experimenter
expectancy effects, where the experimenter’s behavior biases partici-
pants in a way that results in the appearance of condition differences
where no true difference exists. The classic example of such effects is
from the animal learning literature and the story of Clever Hans. Clever
Hans was a horse who appeared able to do arithmetic by tapping out so-
lutions with his hoof. On deeper investigation, it became apparent he
was being cued by his trainer’s posture (apparently without the trainer’s
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16 These are commonly referred to as
double blind designs (though the term
masked is now often preferred).

knowledge) to stop tapping when the desired answer was reached. The
horse knew nothing about math, but the experimenter’s expectations
were altering the horse’s behavior across different conditions.
In any experiment delivered by human experimenters who know what
condition they are delivering, condition differences can result from ex-
perimenters imparting their expectations. Table 9.2 shows the results
of a meta-analysis estimating sizes of expectancy effects in a range of
domains – the magnitudes are shocking. There’s no question that ex-
perimenter expectancy is sufficient to “create” many interesting phe-
nomena artifactually. The mechanisms of expectancy are an interesting
research topic in their own right; in many cases expectancies appear to
be communicated non-verbally in much the sameway that Clever Hans
learned (Rosnow and Rosenthal 1997).

Table 9.2: Magnitudes of expectancy effects. Based on Rosenthal (1994).

Domain d r Example of type of study

Laboratory
interviews

0.14 .07 Effects of sensory restriction on reports of
hallucinatory experiences

Reaction time 0.17 .08 Latency of word associations to certain stimulus
words

Learning and
ability

0.54 .26 IQ test scores, verbal conditioning (learning)

Person perception 0.55 .27 Perception of other people’s success
Inkblot tests 0.84 .39 Ratio of animal to human Rorschach responses
Everyday
situations

0.88 .40 Symbol learning, athletic performance

Psychophysical
judgments

1.05 .46 Ability to discriminate tones

Animal learning 1.73 .65 Learning in mazes and Skinner boxes
Weighted mean 0.70 .33
Unweighted mean 0.74 .35
Median 0.70 .33

In medical research, the gold standard is an experimental design where
neither patients nor experimenters know which condition the patients
are in.16 Results from other designs are treated with suspicion because
of their vulnerability to demand and expectancy effects. In psychology,
the most common modern protection against experimenter expectancy
is the delivery of interventions by a computer platform that can give
instructions in a coherent and uniform way across conditions.
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17 One caveat is that the validity of a ma-
nipulation incorporates the validity of
the manipulation and the measure. You
can’t really have a good estimate of a
causal effect if the measurement is in-
valid.

In the case of interventions that must be delivered by experimenters,
ideally experimenters should be unaware of which condition they are
delivering. On the other hand, the logistics of maintaining experi-
menter ignorance can be quite complicated in psychology. For this
reason, many researchers opt for lesser degrees of control, for example,
choosing to standardize delivery of an intervention via a script. These
designs are sometimes necessary for practical reasons but should be
scrutinized closely. “How can you rule out experimenter expectancy
effects?” is an uncomfortable question that should be asked more
frequently in seminars and paper reviews.

9.2.1 External validity of manipulations
The goal of a specific experimental manipulation is to operationalize
a particular causal relationship of interest. Just as the relationship be-
tween measure and construct can be more or less valid, so too can the
relationship between manipulation and construct. How can you tell?
Just like in the case of measures, there’s no one royal road to validity.
You need to make a validity argument (Kane 1992).17

For testing the effect of money on happiness, our manipulation was to
give participants $1000. This manipulation is clearly face valid. But
how often do people just receive a windfall of cash, versus getting a
raise at work or inheriting money from a relative? Is the effect caused
by having the money, or receiving the money with no strings attached?
We might have to do more experiments to figure out what aspect of
the money manipulation was most important. Even in straightforward
cases like this one, we need to be careful about the breadth of the claims
we make.
Sometimes validity arguments are made based on the success of the ma-
nipulation in producing some change in the measurement. In the the
implicit theory of mind case study we began with, the stimulus con-
tained an animated Smurf character, and the argument was that partic-
ipants took the Smurf’s beliefs into account in making their judgments.
This stimulus choice seems surprising – not only would participants
have to track the implicit beliefs of other people, they would also have
to be tracking the beliefs of depictions of non-human, animated charac-
ters. On the other hand, based on the success of the manipulation, the
authors made an a fortiori argument: if people track even an animated
Smurf’s beliefs, then they must be tracking the beliefs of real humans.
Let’s look at one last example to think more about manipulation valid-
ity. Walton and Cohen (2011) conducted a short intervention in which
college students (N=92) read about social belonging and the challenges
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18 On the other hand, if the manipu-
lation doesn’t produce a change in your
measure, maybe the manipulation is in-
valid, but the construct still exists. Sense
of belonging could still be important
even if my particular intervention failed
to alter it!

of the transition to college and then reframed their own experiences us-
ing these ideas. This intervention led to long-lasting changes in grades
and well-being. While the intervention undoubtedly had a basis in the-
ory, part of our understanding of the validity of the intervention comes
from its efficacy: sense of belonging must be a powerful factor if inter-
vening on it causes such big changes in the outcome measures.18 The
only danger is when the argument becomes circular – a theory is cor-
rect because the intervention yielded a success, and the intervention is
presumed to be valid because of the theory. The way out of this cir-
cle is through replication and generalization of the intervention. If the
intervention repeatably produces the outcome, as has been shown in
replications of the sense of belonging intervention (Walton, Brady, and
Crum 2020), then the manipulation becomes an intriguing target for
future theories. The next step in such a research program is to under-
stand the limitations of such interventions (sometimes called boundary
conditions).

9.3 Summary: Experimental design
In this chapter, we started by examining some common experimental
designs that allow us to measure effects associated with one or more
manipulations. Our advice, in brief, was: “keep it simple!” The failure
mode ofmany experiments is that they contain toomanymanipulations,
and these manipulations are measured with too little precision.
Start with just a single manipulation, and measure it carefully. Ideally
this measurement should be done via a within-participants design un-
less the manipulation is completely incompatible with this design. And
if this design can incorporate a dose-response manipulation, it is more
likely to provide a basis for quantitative theorizing.
How do you ensure that your manipulation is valid? A careful experi-
menter needs to consider possible confounds and ensure that these are
controlled or randomized. They must also consider other artifacts in-
cluding placebo, demand, and expectancy effects. Finally, they must
begin thinking about the relation of their manipulation to the broader
theoretical construct whose causal role they hope to test.

DISCUSSION QUESTIONS

1. Choose a classic study in your area of psychology. Analyze the design choices: how many factors were manipu-
lated? How many measures were taken? Did it use a within-participants or between-participants design? Were
measures repeated? Can you justify these choices with respect to trade-offs (e.g., carry-over effects, fatigue,
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etc.)?
2. Consider the same study. Design an alternative version that varies one of these design parameters (e.g., drops

a manipulation or measure, changes within- to between-participants, etc.). What are the pros and cons of this
change? Do you think your design improves on the original?

READINGS

– Much of this material is covered in more depth in the classic text on research methods: Rosenthal, R. & Rosnow,
R. L. 2008. Essentials of Behavioral Research: Methods and Data Analysis. Third Edition. NewYork: McGraw-Hill.
http://dx.doi.org/10.34944/dspace/66.
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1 Titles changed to protect the original
authors. These researchers might very
well have said more specific things in the
text of their paper.
2 Generic language is a fascinating
linguistic phenomenon. When we
say things like “mosquitoes transmit
malaria,” we don’t mean that all
mosquitoes do it, only something like
“it’s a valid and diagnostic generalization
about mosquitoes in contrast to other
relevant insects or other creatures that
they are spreaders of malaria” (Tessler
and Goodman 2019).

10 SAMPLING

🍏 LEARNING GOALS

– Discuss sampling theory and stratified sampling
– Reason about the limitations of different samples, especially convenience samples
– Consider sampling biases and how they affect your inferences
– Learn how to choose and justify an appropriate sample size for your experiment

As we keep reminding you, experiments are designed to yield measure-
ments of a causal effect. But a causal effect of what, and for whom?
These are questions that are often given surprisingly little air time in
our papers. Titles in our top journals read “Daxy thinking promotes
fribbles,” “Doing fonzy improves smoodling,” or “Blicket practice pro-
duces more foozles than smonkers.”1 Each of these uses generic lan-
guage to state a claim that is implied to be generally true (DeJesus et al.
2019),2 but for each of these, we could reasonably ask “for whom?”. Is
it everyone? Or a particular set of people? These are questions about
our key theme, GENERALIZABILITY.
Let’s focus on smoodling. We wouldn’t let the authors get away with
a fully universal version of their claim: “Doing [any] fonzy improves
smoodling [for everyone].” The non-generic version states a generaliza-
tion that goes way beyond the evidence we actually have. But it seems
that we are oftenOKwith authors implying (with generic language) that
their findings generalize broadly. Imagine for a second what the com-
pletely specific version of one of these titles might look like: “Reading
one particular selection of fonzy for fifteen minutes in the lab improved
36 college students’ smoodling scores on a questionnaire.” This paper
sounds pretty narrow in its applicability!
We’ve already run into generalizability in our treatment of statistical
estimation and inference. When we estimated a particular quantity (say,
the effect of fonzy), we did so in our own sample. But we then used
inferential tools to reason about how the estimate in this sample related
to the parameter in the population as a whole. How do we link up
these statistical tools for generalization to the scientific questions we have
about the generalizability of our findings? That’s the question of this
chapter.
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3 There are some tools for dealing with
estimation in smaller populations where
your sample is a substantial fraction of
the population (e.g., a survey of your de-
partment where you get responses from
half of the students). We won’t discuss
those here; our focus is on generalizing
to large populations of humans.

A key set of decisions in experiment planning is what population to
sample from and how to sample. We’ll start by talking about the basics
of sampling theory: different ways of sampling and the generalizations
they do and don’t license. The second section of the chapter will then
deal with sampling biases that can compromise our effect estimates. A
final set of key decisions is about sample size planning. In the third part
of the chapterwe’ll address this issue, startingwith classic power analysis
but then introducing several other ways that an experimenter can plan
and justify their sample size.

10.1 Sampling theory
The basic idea of sampling is simple: you want to estimate some
measurement for a large or infinite population by measuring a sample
from that population.3 Sampling strategies are split into two categories.
Probability sampling strategies are those in which each member of the
population has some known, pre-specified probability of being selected
to be in the sample – think, “generalizing to Japanese people by picking
randomly from a list of everyone in Japan.” Non-probability sampling
covers strategies in which probabilities are unknown or shifting, or in
which some members of the population could never be included in
the sample – think, “generalizing to Germans by sending a survey to
a German email list and asking people to forward the email to their
family.”

CASE STUDY

Is everyone bad at describing smells?
Since Darwin, scientists have assumed that smell is a vestigial sense in humans – one that we don’t even bother to
encode in language. In English we don’t even have consistent words for odors. We can say something is “stinky,”
“fragrant”, or maybe “musty,” but beyond these, most of our words for smells are about the source of the smell,
not the qualities of it. Bananas, roses, and skunks all have distinctive smells, but we don’t have any vocabulary for
naming what is common or uncommon about them. And when we make up ad-hoc vocabulary, it’s typically quite
inconsistent (Majid and Burenhult 2014). The same situation applies across many languages.
So, would it be a good generalization about human beings – all people – that olfaction as a sense is de-emphasized
relative to, say, vision? This inference has a classic sample-to-population structure. Within several samples of
participants using widely-spoken languages, we observe limited and inconsistent vocabulary for smells, as well as
poor discrimination. We use these samples to license an inference to the population – in this case, the entire human
population.
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Figure 10.1: Data from Majid and Burenhult (2014) on the consistency of color and odor naming in English and Jahai speakers.
Higher values indicate more consistent descriptions. Error bars show standard deviation.

But these inferences about the universal lack of olfactory vocabulary are likely based on choosing non-representative
samples! Multiple hunter-gatherer groups appear to have large vocabularies for consistent smell description. For
example, the Jahai, a hunter-gatherer group on the Malay Peninsula, have a vocabulary that includes at least twelve
words for distinct odors, for example /cŋ�s/, which names odors with a “stinging smell” like gasoline, smoke, or
bat droppings. When Jahai speakers are asked to name odors, they produce shorter and much more consistent
descriptions than English speakers – in fact, their smell descriptions were as consistent as their color descriptions
(Figure 10.1). Further studies implicate the hunter-gatherer lifestyle as a factor: while several hunter-gatherer
groups show good odor naming, nearby horticulturalist groups don’t (Majid and Kruspe 2018).
Generalizations about humans are tricky. If you want to estimate the average odor naming ability, you could take
a random sample of humans and evaluate their odor naming. Most of the individuals in the sample would likely
speak English, Mandarin, Hindi, or Spanish. Almost certainly, none of them would speak Jahai, which is spoken by
only a little more than a thousand people and is listed as Threatened by Ethnologue (https://www.ethnologue.com/
language/jhi). Your estimate of low odor naming stability might be a good guess for the majority of the world’s
population, but would tell you little about the Jahai.
On the other hand, it’s more complicated to jump from a statistical generalization about average ability to a richer
claim, like “humans have low olfactory naming ability.” Such claims about universal aspects of the human ex-
perience require much more care and much stronger evidence (Piantadosi and Gibson 2014). From a sampling
perspective, human behavior and cognition show immense and complex heterogeneity – variability of individuals
and variability across clusters. Put simply, if we want to know what people in general are like, we have to think
carefully about which people we include in our studies.

10.1.1 Classical probability sampling
In classical sampling theory there is some sampling frame containing ev-
ery member of the population – think of a giant list with every adult
human’s name in it. Then we use some kind of sampling strategy,
maybe at the simplest just a completely random choice, to select 𝑁 hu-
mans from that sample frame, and then we include them in our exper-
iment. This scenario is the one that informs all of our statistical results
about how sample means converge to the population mean (as in Chap-
ter 6).

https://www.ethnologue.com/language/jhi
https://www.ethnologue.com/language/jhi
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4 Readers can come up with counter-
examples of recent studies that focus on
representative sampling, but our guess
is that they will prove the rule more
generally. For example, a recent study
tested the generality of growth mind-
set interventions for US high school stu-
dents using a national sample (Yeager et
al. 2019). This large-scale study sampled
more than 100 high schools from a sam-
pling frame of all registered high schools
in the US, then randomly assigned stu-
dents within schools that agreed to par-
ticipate. They then checked that the
schools that agreed to participate were
representative of the broader population
of schools. This study is great stuff, but
we hope you agree that if you find your-
self in this kind of situation – planning
a multi-investigator 5 year consortium
study on a national sample – you might
want to consult with a statistician and
not use an introductory book like this
one.

Unfortunately, we very rarely do sampling of this sort in psychological
research. Gathering true probability samples from the large populations
that we’d like to generalize to is far too difficult and expensive. Con-
sider the problems involved in doing some experiment with a sample
of all adult humans, or even adult English-speaking humans who are located
in the United States. As soon as you start to think about what it would
take to collect a probability sample of this kind of population, the com-
plexities get overwhelming. How will you find their names – what if
they aren’t in the phone book? How will you contact them – what if
they don’t have email? How will they do your experiment – what if
they don’t have an up-to-date web browser? What if they don’t want
to participate at all?
Instead, the vast majority of psychology research has been conducted
with convenience samples: non-probability samples that feature indi-
viduals who can be recruited easily, such as college undergraduates or
workers on crowdsourcing platforms like Amazon Mechanical Turk or
Prolific Academic (see Chapter 12). We’ll turn to these below.
For survey research, on the other hand – think of election polling –
there are many sophisticated techniques for dealing with sampling; al-
though this field is still imperfect, it has advanced considerably in trying
to predict complex and dynamic behaviors. One of the basic ideas is
the construction of representative samples: samples that resemble the
population in their representation of one or several sociodemographic
characteristics like gender, income, race and ethnicity, age, or political
orientation.
Representative samples can be constructed by probability sampling, but
they can also be constructed through non-probability methods like re-
cruiting quotas of individuals from different groups via various different
convenience methods. These methods are critical for much social sci-
ence research, but they have been used less frequently in experimental
psychology research and aren’t necessarily a critical part of the begin-
ning experimentalist’s toolkit.4

 DEPTH

Representative samples and stratified sampling
Stratified sampling is a cool method that can help you get more precise estimates of your experimental effect, if
you think it varies across some grouping in your sample. Imagine you’re interested in a particular measure in a
population – say, attitudes towards tea drinking across US adults – but you think that this measure will vary with
one or more characteristics such as whether the adults are frequent, infrequent, or non-coffee drinkers. Evenworse,
your measure might be more variable within one group: perhaps most frequent and infrequent coffee drinkers feel
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OK about tea, but as a group non-coffee drinkers tend to hate it (most don’t drink any caffeinated beverages).
A simple random sample from this heterogeneous population will yield statistical estimates that converge asymptot-
ically to the correct population average for tea-drinking attitudes. But it will do so more slowly than ideal because
any given sample may over- or under-sample non-drinkers just by chance. In a small sample, if you happen to get
too many non-coffee drinkers, your estimate of attitudes will be biased downward; if you happen to get too few,
you will be biased upwards. All of this will come out in the wash eventually, but any individual sample (especially
a small one) will be noisier than ideal.

Figure 10.2: Illustration of stratified sampling. The left panel shows the sampling frame. The upper frames show the sampling
frame stratified by a participant characteristic and a stratified sample. The lower frame shows a simple random sample, which
happens to omit one group completely by chance.

But, if you know the proportion of frequent, infrequent, or non-coffee drinkers in the population, you can perform
stratified sampling within those subpopulations to ensure that your sample is representative along this dimension
(Neyman 1992). This situation is pictured in Figure 10.2, which shows how a particular sampling frame can be
broken up into groups for stratified sampling. The result is a sample that matches the population proportions on a
particular characteristic. In contrast, a simple random sample can over- or under-sample the subgroups by chance.
Stratified sampling can lead to substantial gains in the precision of your estimate. These gains are most prominent
when either the groups differ a lot in their mean or when they differ a lot in their variance. There are several
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important refinements of stratified sampling in case you think these methods are important for your problem. In
particular, optimal sampling can help you figure out how to over-sample groupswith higher variance. On the other
hand, if the characteristic on which you stratify participants doesn’t relate to your outcome at all, then estimates
from stratified sampling converge just as fast as random sampling (though it’s a bit more of a pain to implement).
Figure 10.3 shows a simulation of the scenario in Figure 10.2, in which each coffee preference group has a different
tea attitude mean, and the smallest group has the biggest variance. Although the numbers here are invented, it’s
clear that estimation error is much smaller in the stratified group and estimation error declines much more quickly
as samples get larger.

Figure 10.3: Simulation showing the potential benefits of stratification. Each dot is an estimatedmean for a sample of a particular
size, sampled randomly or with stratification. Red points show the mean and standard deviation of sample estimates.

Stratification is everywhere, and it’s useful even in convenience samples. For example, researchers who are in-
terested in development typically stratify their samples across ages (e.g., recruiting equal numbers of two- and
three-year-olds for a study of preschoolers). You can estimate developmental change in a pure random sample, but
you are guaranteed good coverage of the range of interest when you stratify.
If you have an outcome that you think varies with a particular characteristic, it’s not a bad idea to consider stratifica-
tion. But don’t go overboard – you can drive yourself to distraction finding the last left-handed non-binary coffee
drinker to complete your sample. Focus on stratifying when you know the measure varies with the characteristic
of interest.

10.2 Convenience samples, generalizability, and the
WEIRD problem

Now let’s go back to the question of generalizability. How generalizable
are the experimental effect estimates that we obtain in experiments that
are conducted only with convenience samples? We’ll start by laying
out the worst version of the problem of generalizability in experimental
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5 The term WEIRD has been very use-
ful in drawing attention to the lack of
representation of the breadth of human
experiences in experimental psychology.
But one negative consequence of this
idea has been the response that what we
need to do as a field is to sample more
“non-WEIRD” people. It is not help-
ful to suggest that every culture outside
the WEIRD moniker is the same (Syed
and Kathawalla 2020)! A better starting
point is to consider the way that cultural
variation might guide our choices about
sampling.

psychology. We’ll then try to pull back from the brink and discuss some
reasons why we might not want to be in despair despite some of the
generalizability issues that plague the psychology literature.

10.2.1 The worst version of the problem
Psychology is the study of the humanmind. But from a sampling theory
standpoint, not a single estimate in the published literature is based on a
simple random sample from the human population. And the situation
is worse than that. Here are three of the most severe issues that have
been raised regarding the generalizability of psychology research.

1. Convenience samples. Almost all research in experimental psy-
chology is performed with convenience samples. This issue has
led to the remark that “the existing science of human behavior
is largely the science of the behavior of sophomores” (McNemar,
1946, quoted in Rosenthal and Rosnow 1984). The samples we
have easy access to just don’t represent the populations we want
to describe! At some point there was a social media account de-
voted to finding biology papers that made big claims about curing
diseases and appending the qualifier “inmice” to them. Wemight
consider whether we need to do the same to psychology papers.
Would “Doing fonzy improves smoodling in sophomore college un-
dergraduates in the Western US” make it into a top journal?

2. The WEIRD problem. Not only are the convenience samples
that we study not representative of the local or national contexts
in which they are recruited, those local and national contexts
are also unrepresentative of the broad range of human experi-
ences. Henrich, Heine, and Norenzayan (2010) coined the term
WEIRD (Western, Educated, Industrialized, Rich, and Demo-
cratic) to sum up some of the ways that typical participants in
psychology experiments differ from other humans. The vast over-
representation of WEIRD participants in the literature has led
some researchers to suggest that published results simply reflect
“WEIRD psychology” – a small and idiosyncratic part of a much
broader universe of human psychology.5

3. The item sampling issue. As we discussed in Chapter 7 and 9,
we’re typically not just trying to generalize to new people, we’re
also trying to generalize to new stimuli (Westfall, Judd, andKenny
2015). The problem is that our experiments often use a very
small set of items, constructed by experimenters in an ad-hoc way
rather than sampled as representatives of a broader population of
stimuli that we hope to generalize to with our effect size estimate.



10 SAMPLING 195

What’s more, our statistical analyses sometimes fail to take stimu-
lus variation into account. Unless we know about the relationship
of our items to the broader population of stimuli, our estimates
may be based on unrepresentative samples in yet another way.

In sum, experiments in the psychology literature primarily measure ef-
fects from WEIRD convenience samples of people and unsystematic
samples of experimental stimuli. Should we throw up our hands and
resign ourselves to an ungeneralizable “science” of sample-specific anec-
dotes (Yarkoni 2020)?

10.2.2 Reasons for hope and ways forward
We think the situation isn’t as bleak as the arguments above might have
suggested. Underlying each of the arguments above is the notion of
heterogeneity, the idea that particular effects vary in the population.
Let’s think through a very simple version of this argument. Say we have
an experiment that measures the smoodling effect, and it turns out that
smoodling is completely universal and invariant throughout the human
population. Now, if we want to get a precise estimate of smoodling,
we can take any sample we want because everyone will show the same
pattern. Because smoodling is homogeneous, a non-representative sam-
ple will not cause problems. There are some phenomena like this! For
example, the Stroop task produces a consistent and similar interference
effect for almost everyone (Hedge, Powell, and Sumner 2018).

Figure 10.4: Illustration of the interac-
tion of heterogeneity and convenience
samples. Colors indicate arbitrary popu-
lation subgroups. Left hand panels show
sample composition. Individual plots
show the distribution of effect sizes in
each subgroup.

Figure 10.4 illustrates this argument more broadly. If you have a rep-
resentative sample (top), then your sample mean and your population
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6 Many people have theorized about the
ways that culture and language in gen-
eral might moderate psychological pro-
cesses (e.g., Markus and Kitayama 1991).
What we’re talking about is related but
slightly different – a theory not of what’s
different, but of when there should be
any difference and when there shouldn’t
be. As an example, Tsai (2007)’s “ideal
affect” theory predicts that there should
bemore similarities in the distribution of
actual affect across cultures, but that cul-
tural differences should emerge in ideal
affect (what people want to feel like)
across cultures. This is a theory of when
you should see homogeneity and when
you should see heterogeneity.

mean will converge to the same value, regardless of whether the effect
is homogeneous (right) or heterogeneous (right). That’s the beauty of
sampling theory. If you have a convenience sample, one part of the
population is over-represented in the sample. The convenience sam-
ple doesn’t cause problems if the size of your effect is homogeneous in
the population – as with the case of smoodling or Stroop. The trou-
ble comes when you have an effect that is heterogeneous. Because one
group is over-represented, you get systematic bias in the sample mean
relative to the population mean.
So the problems listed above – convenience samples, WEIRD samples,
and narrow stimulus samples – only cause issues if effects are hetero-
geneous. Are they? The short answer is, we don’t know. Convenience
samples are fine in the presence of homogeneous effects, but we only
use convenience samples so we may not know which effects are homo-
geneous! Our metaphorical heads are in the sand.
We can’t do better than this circularity without a theory of what should
be variable and what should be consistent between individuals.6 As
naïve observers of human behavior, differences between people often
loom large. We are keen observers of social characteristics like age, gen-
der, race, class, and education. For this reason, our intuitive theories
of psychology often foreground these characteristics as the primary lo-
cus for variation between people. Certainly these characteristics are
important, but they fail to explain many of the invariances of human
psychology as well. An alternative line of theorizing starts with the idea
that “lower-level” parts of psychology – like perception – should be less
variable than “higher-level” faculties like social cognition. This kind of
theory sounds like a useful place to start, but there are also counter-
examples in the literature, including cases of cultural variation in per-
ception (Henrich, Heine, and Norenzayan 2010).
Multi-lab, multi-nation studies can help to address questions about het-
erogeneity, breaking the circularity we described above. For example,
ManyLabs 2 systematically investigated the replicability of a set of phe-
nomena across cultures (Klein et al. 2018), finding limited variation in
effects between WEIRD sites and other sites. And in a study compar-
ing a set of convenience and probability samples, Coppock, Leeper, and
Mullinix (2018) found limited demographic heterogeneity in another
sample of experimental effects from across the social sciences. So there
are at least some cases where we don’t have to worry as much about het-
erogeneity. More generally, such large-scale studies offer the possibility
of measuring and characterizing demographic and cultural variation –
as well as how variation itself varies between phenomena!
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7 There is a deep literature on correct-
ing these biases using causal inference
frameworks. These techniques are well
outside of the scope of this book, but
if you’re interested, you might look at
some of the textbooks we recommended
earlier, e.g. Cunningham (2021).

Figure 10.5: Four reasons why money
and happiness can be correlated in a par-
ticular sample: 1. causal relationship, 2.
reverse causality, 3. confounding with
friendship, and 4. collider bias. For this
last scenario, we have to assume that our
measurement is conditioned on being in
this sample, meaning we only look at
the association of money and happiness
within the social services sample.

10.3 Biases in the sampling process
In fields like econometrics or epidemiology that use observational meth-
ods to estimate causal effects, reasoning about sampling biases is a critical
part of estimating generalizable effects. If your sample does not repre-
sent the population of interest, then your effect estimates will be biased.7
In the kind of experimental work we are discussing many of these issues
are addressed by random assignment, including the first issue we treat:
collider bias. Not so for the second one, attrition bias, which is an issue
even in randomized experiments.

10.3.1 Collider bias
Imagine you want to measure the association between money and hap-
piness through a (non-experimental) survey. As we discussed in Chap-
ter 1, there are plenty of causal processes that could lead to this associ-
ation. Figure 10.5 shows several of these scenarios. Money could truly
cause happiness (1); happiness could cause you tomakemoremoney (2);
or some third factor – say having lots of friends – could cause people to
be happier and richer (3).
But we can also create spurious associations if we are careless in our
sampling. One prominent problem that we can induce is called collider
bias. Suppose we recruited our sample from the clients of a social ser-
vices agency. Unfortunately, both of our variables might affect presence
in a social service agency (Figure 10.5, 4): people might be interacting
with the agency for financial or benefits assistance, or else for psycho-
logical services (perhaps due to depression).
Being in a social services sample is called a collider variable because the
two causal arrows collide into it (they both point to it). If we look just
within the social services sample, we might see a negative association
between wealth and happiness – on average the people coming for fi-
nancial assistance would have less wealth and more happiness than the
people coming for psychological services. The take-home here is that
in observational research, you need to think carefully about the causal
structure of your sampling process (Rohrer 2018)!
If you are doing experimental research, you are mostly protected from
this kind of bias: Random assignment still “works” even in sub-selected
samples. If you run a money intervention within a social-services popu-
lation using random assignment, you can still make an unbiased estimate
of the effect of money on happiness. But that estimate will only be valid
for members of that sub-selected population.
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Figure 10.6: Selective attrition can lead
to a bias even in the presence of ran-
dom assignment. Dashed line indicates
a causal relationship that is unobserved
by the researcher.
8 If you get deeper into drawing DAGs
like we are doing here, you will want to
picture attrition as its own node in the
graph, but that’s beyond the scope of this
book.

10.3.2 Attrition bias
Attrition is when people drop out of your study. You should do every-
thing you can to improve participants’ experiences (see Chapter 12) but
sometimes – especially when a manipulation is onerous for participants
or your experiment is longitudinal and requires tracking participants for
some time – you will still have participants withdraw from the study.
Attrition on its own can be a threat to the generalizability of an experi-
mental estimate. Imagine you do an experiment comparing a new very
intense after-school math curriculum to a control curriculum in a sam-
ple of elementary school children over the course of a year. By the end
of the year, suppose many of your participants have dropped out. The
families who have stayed in the study are likely those who care most
about math. Even if you see an effect of the curriculum intervention,
this effect may generalize only to children in families who love math.
But there is a further problemwith attrition, known as selective attrition.
If attrition is related to the outcome specifically within the treatment
group (or for that matter, specifically within the control group), you
can end up with a biased estimate, even in the presence of random as-
signment (Nunan, Aronson, and Bankhead 2018)! Imagine students in
the control condition of your math intervention experiment stayed in
the sample, but the math intervention itself was so tough that most fam-
ilies dropped out except those who were very interested in math. Now,
when you compare math scores at the end of the experiment, your esti-
mate will be biased (Figure 10.6): scores in the math condition could be
higher simply because of differences in who stuck around to the end.8

Unfortunately, it turns out that attrition bias can be pretty common
even in short studies, especially when they are conducted online when
a participant can drop out simply by closing a browser window. This
bias can be serious enough to lead to false conclusions. For example,
Zhou and Fishbach (2016) ran an experiment in which they asked on-
line participants to write about either 4 happy events (low difficulty)
or 12 happy events (high difficulty) from the last year and then asked
the participants to rate the difficulty of the task. Surprisingly, the high
difficulty task was rated as easier than the low difficulty task! Selective
attrition was the culprit for this counter-intuitive conclusion: while
only 26% of participants dropped out of the low difficulty condition, a
full 69% dropped out of the high difficulty task. The 31% that were left
found it quite easy for them to generate 12 happy events, and so they
rated the objectively harder task as less difficult.
Always try to track and report attrition information. That lets you – and
others – understandwhether attrition is leading to bias in your estimates
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9 If you get interested, there is a whole
field of statistics that focuses on missing
data and provides models for reasoning
about and dealing with cases where data
might not bemissing completely at ran-
dom (Little and Rubin 2019 is the clas-
sic reference for these tools). The causal
inference frameworks referenced above
also have very useful ways of thinking
about this sort of bias.

or threats to the generalizability of your findings.9

10.4 Sample size planning
Now that you have spent some time considering your sample and what
population it represents, how many people will your sample contain?
Continuing to collect data until you observe a 𝑝 < .05 in an inferen-
tial test is a good way to get a false positive. This practice, known as
“optional stopping,” is a good example of a practice that invalidates 𝑝-
values, much like the cases of analytic flexibility discussed in Chapter 3
and Chapter 6.
Decisions about when to stop collecting data should not be data-
dependent. Instead you should transparently declaring your data
collection stopping rule in your study preregistration (see Chapter 11).
This step will reassure readers that there is no risk of bias from optional
stopping. The simplest stopping rule is “I’ll collect data until I get to a
target 𝑁” – all that’s needed in this case is a value for 𝑁 .
But how do you decide 𝑁? It’s going to be dependent on the effect
that you want to measure, and how it varies in the population. Smaller
effects will require larger sample sizes. Classically, 𝑁 was computed
using power analysis, which can provide a sample size for which you
have a good chance of rejecting the null hypothesis (given a particular
expected effect size). We’ll introduce this computation below.
Classical power analysis is not the only way to plan your sample size.
There are a number of other useful strategies, some of which rely on
the same kinds of computations as power analysis (Table 10.1). Each of
these can provide a valid justification for a particular sample size, but
they are useful in different situations.

Table 10.1: Types of data collection stopping rules.

Method Stopping Rule Example

Power
analysis

Stop at N for known probability of
rejecting the null given known effect
size

Randomized trial with strong
expectations about effect size

Resource
constraint

Stop collecting data after a certain
amount of time or after a certain
amount of resources are used

Time-limited field work

Smallest
effect size of
interest

Stop at N for known probability of
rejecting the null for effects greater
than some minimum

Measurement of a
theoretically important effect
with unknown magnitude
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Figure 10.7: Standard decision matrix
for NHST.

Method Stopping Rule Example

Precision
analysis

Stop at N that provides some known
degree of precision in measure

Experimental measurement
to compare with predictions
of cognitive models

Sequential
analysis

Stop when a known inferential
criterion is reached

Intervention trial designed to
accept or reject null with
maximal efficiency

10.4.1 Power analysis
Let’s start by reviewing the null-hypothesis significance testing
paradigm that we introduced in Chapter 6. Recall that we introduced
the Neyman-Pearson decision-theoretic view of testing in Chapter 6,
shown again in Figure 10.7. The idea was that we’ve got some null
hypothesis 𝐻0 and some alternative 𝐻1 – something like “no effect”
and “yes, there is some effect with known size”– and we want to use
data to decide which state we’re in. 𝛼 is our criterion for rejecting the
null, conventionally set to 𝛼 = .05.
But what if 𝐻0 is actually false and the alternative 𝐻1 is true? Not
all experiments are equally well set up to reject the null in those cases.
Imagine doing an experiment with 𝑁 = 3. In that case, we’d almost
always fail to reject the null, even if it were false. Our sample would
almost certainly be too small to rule out sampling variation as the source
of our observed data.
Let’s try to quantify ourwillingness tomiss the effect – the false negative
rate. We’ll denote this probability with 𝛽. If 𝛽 is the probability of
missing an effect (failing to reject the null when it’s really false), then
1−𝛽 is the probability that we correctly reject the null when it is false. That’s
what we call the statistical power of the experiment.
We can only compute power if we know the effect size for the alterna-
tive hypothesis. If the alternative hypothesis is a small effect, then the
probability of rejecting the null will typically be low (unless the sample
size is very large). In contrast, if the alternative hypothesis is a large
effect, then the probability of rejecting the null will be higher.
The same dynamic holds with sample size: the same effect size will be
easier to detect with a larger sample size than with a small one. Fig-
ure 10.8 shows how this relationship works. A large sample size cre-
ates a tighter null distribution (right side) by reducing sampling error.
A tighter null distribution means you can reject the null more of the
time based on the variation in a true effect. If your sample size is too
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Figure 10.8: Illustration of how larger
sample sizes lead to greater power.

10 You can also refer to a design as over-
powered, though we object slightly to
this characterization, since the value of
large datasets is typically not just to re-
ject the null but also to measure an ef-
fect with high precision and to investi-
gate how it is moderated by other char-
acteristics of the sample.
11 Our focus here is on giving you a con-
ceptual introduction to power analysis,
but we refer you to Cohen (1992) for a
more detailed introduction.

small to detect your effect much of the time, we call this being under-
powered.10

Classical power analysis involves computing the sample size 𝑁 that’s
necessary in order to achieve some level of power, given 𝛼 and a known
effect size.11 The mathematics of the relationship between 𝛼, 𝛽, 𝑁 , and
effect size have been worked out for a variety of different statistical tests
(Cohen 2013) and codified in software like G*Power (Faul et al. 2007)
and the pwr package for R (Champely et al. 2017). For other cases
(including mixed effects models), you may have to conduct a simulation
in which you generate many simulated experimental runs under known
assumptions and compute how many of these lead to a significant effect;
luckily, R packages exist for this purpose as well, including the simr
package (Green and MacLeod 2016).

10.4.2 Power analysis in practice
Let’s do a power analysis for our hypothetical money and happiness
experiment. Imagine the experiment is a simple two group design
in which participants from a convenience population are randomly
assigned either to receive $1000 and some advice on saving money
(experimental condition) vs. just receiving the advice and no money
(control condition). We then follow up a month later and collect
self-reported happiness ratings. How many people should we have
in our study in order to be able to reject the null? The answer to
this question depends on our desired values of 𝛼 and 𝛽 as well as our
expected effect size for the intervention.
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12 Really, researchers interested in using
power analysis in their work should give
some thought to what sort of chance of
a false negative they are willing to ac-
cept. In exploratory research perhaps a
higher chance of missing an effect is rea-
sonable; in contrast, in confirmatory re-
search it might make sense to aim for a
higher level of power.

For 𝛼 we will just set a conventional significance threshold of 𝛼 = .05.
But what should be our desired level of power? The usual standard in
the social sciences is to aim for power above 80% (e.g., 𝛽 < .20); this
gives you 4 out of 5 chances to observe a significant effect. But just
like 𝛼 = .05, this is a conventional value that is perhaps a little bit too
loose for modern standards – a strong test of a particular effect should
probably have 90% or 95% power.12

These choices are relatively easy, compared to the fundamental issue:
our power analysis requires some expectation about our effect size. This
is the first fundamental problem of power analysis: if you knew the
effect size, you might not need to do the experiment!
So how are you supposed to get an estimate of effect size? Here are a
few possibilities:

– Meta-analysis. If there is a good meta-analysis of the effect that
you are trying to measure (or something closely related), then you
are in luck. A strong meta-analysis will have not only a precise ef-
fect size estimate but also some diagnostics detecting and correct-
ing potential publication bias in the literature (see Chapter 16).
While these diagnostics are imperfect, they still can give you a
sense for whether you can use the meta-analytic effect size esti-
mate as the basis for a power analysis.

– Specific prior study. A more complicated scenario is when you
have only one or a handful of prior studies that you would like
to use as a guide. The trouble is that any individual effect in the
literature is likely to be inflated by publication and other selective
reporting biases (see Chapter 3). Thus, using this estimate likely
means your study will be under-powered – you might not get as
lucky as a previous study did!

– Pilot testing. Many people (including us) at some point learned
that one way to do a power analysis is to conduct a pilot study,
estimate the effect size from the pilot, and then use this effect
estimate for power analysis in the main study. We don’t recom-
mend this practice. The trouble is that your pilot study will have
a small sample size, leading to a very imprecise estimate of effect
size (Browne 1995). If you over-estimate the effect size, your
main study will be very under-powered. If you under-estimate,
the opposite will be true. Using a pilot for power analysis is a
recipe for problems.

– General expectations about an effect of interest. In our view, per-
haps the best way you can use power analysis (in the absence of a
really strong meta-analysis, at least) is to start with a general idea
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about the size of effect you expect and would like to be able to
detect. It is totally reasonable to say, “I don’t know how big my
effect is going to be, but let’s see what my power would be if it
weremedium-sized (say 𝑑 = .5), since that’s the kind of thingwe’re
hoping for with our money intervention.” This kind of power
analysis can help you set your expectations about what range of
effects you might be able to detect with a given sample size.

For our money study, using our general expectation of a medium size
effect, we can compute power for 𝑑 = .5. In this case, we’ll simply use
the two-sample 𝑡-test introduced in Chapter 6, for which 80% power
at 𝛼 = .05 and 𝑑 = .5 is achieved by having 𝑁 = 64 in each group.

CODE

Classic power analysis in R is quite simple using the pwr package. The package offers a set of test-specific func-
tions like pwr.t.test(). For each, you supply three of the four parameters specifying effect size (d), number of
observations (n), significance level (sig.level), and power (power); the function computes the fourth. For classic
power analysis, we leave out n:

pwr.t.test(d = .5,
power = .8,
sig.level = .05,
type = "two.sample",
alternative = "two.sided")

But it is also possible to use this same function to compute the power achieved at a combination of 𝑛 and 𝑑, for
example.

There’s a second issue, however. The second fundamental problem of
power analysis is that the real effect size for an experiment may be zero.
And in that case, no sample size will let you correctly reject the null. Go-
ing back to our discussion in Chapter 6, the null hypothesis significance
testing framework is just not set up to let you accept the null hypothesis.
If you are interested in a bi-directional approach to hypothesis testing
in which you can accept and reject the null, you may need to consider
Bayes Factor or equivalence testing approaches (Lakens, Scheel, and Is-
ager 2018), which don’t fit the assumptions of classical power analysis.

10.4.3 Alternative approaches to sample size planning
Let’s now consider some alternatives to classic power analysis that can
still yield reasonable sample size justifications.
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13 In our experience, this kind of plan-
ning is most useful when you are at-
tempting to gather measurements with
sufficient precision to compare between
computational models. Since themodels
can make quantitative predictions that
differ by some known amount, then it’s
clear how tight your confidence intervals
need to be.

14 Another interesting variant is se-
quential parameter estimation, in which
you collect data until a desired level
of precision is achieved (Kelley, Darku,
and Chattopadhyay 2018); this approach
combines some of the benefits of both
precision-based analysis and sequential
analysis.

1. Resource constraint. In some cases, there are fundamental re-
source constraints that limit data collection. For example, if you
are doing fieldwork, sometimes the right stopping criterion for
data collection is “when the field visit is over,” since every addi-
tional datapoint is valuable. When pre-specified, these kinds of
sample size justifications can be quite reasonable, although they
do not preclude being under-powered to test a particular hypoth-
esis.

2. Smallest effect size of interest (SESOI). SESOI analysis is a variant
on power analysis that includes some resource constraint planning.
Instead of trying to intuit how big your target effect is, you instead
choose a level below which you might not be interested in detect-
ing the effect. This choice can be informed by theory (what is
predicted), applied concerns (what sort of effect might be useful
in a particular context), or resource constraints (how expensive or
time-consuming it might be to run an experiment). In practice,
SESOI analysis simply a classic power analysis with a particular
small effect as the target.

3. Precision-based sample planning. As we discussed in Chapter 6,
the goal of research is not always to reject the null hypothesis!
Sometimes – we’d argue that it should be most of the time –
the goal is to estimate a particular causal effect of interest with a
high level of precision, since these estimates are a prerequisite for
building theories. If what you want is an estimate with known
precision (say, a confidence interval of a particular width), you
can compute the sample size necessary to achieve that precision
(Bland 2009; Rothman and Greenland 2018).13

4. Sequential analysis. Your stopping rule need not be a hard cutoff
at a specific 𝑁 . Instead, it’s possible to plan a sequential analysis
using either frequentist or Bayesian methods, in which you plan
to stop collecting data once a particular inferential threshold is
reached. For the frequentist version, the key thing that keeps se-
quential analysis from being 𝑝-hacking is that you pre-specify par-
ticular values of 𝑁 at which you will conduct tests and then cor-
rect your 𝑝-values for having tested multiple times (Lakens 2014).
For Bayesian sequential analysis, you can actually compute a run-
ning Bayes factor as you collect data and stop when you reach a
pre-specified level of evidence (Schönbrodt et al. 2017). This
latter alternative has the advantage of allowing you to collect evi-
dence for the null as well as against it.14

In sum, there are many different ways of justifying your sample size or
your stopping rule. The most important things are 1) to pre-specify



10 SAMPLING 205

your strategy and 2) to give a clear justification for your choice. Ta-
ble 10.2 gives an example sample size justification that draws on several
different concepts discussed here, using classical power computations as
one part of the justification. A reviewer could easily follow the logic of
this discussion and form their own conclusion about whether this study
had an adequate sample size andwhether it should have been conducted
given the researchers’ constraints.
Table 10.2: Example sample size justification, referencing elements of SESOI, resource-
limitation, and power-based reasoning.

Element Justification Text

Background We did not have strong prior information about the likely effect
size, so we could not compute a classical power analysis.

Smallest effect
of interest

Because of our interest in meaningful factors affecting word
learning, we were interested in effect sizes as small as d=.5.

Resource
limitation

We were also limited by our ability to collect data only at our
on-campus preschool.

Power
computation

We calculated that based on our maximal possible sample size of
N=120 (60 per group), we would achieve at least 80% power to
reject the null for effects as small as d = .52.

 DEPTH

Sample sizes for replication studies
Setting the sample size for a replication study has been a persistent issue in the meta-science literature. Naïvely
speaking, it seems like you should be able to compute the effect size for the original study and then simply use that
as the basis for a classical power analysis.
This naïve approach has several flaws, however. First, the effect size from the original published paper is likely an
overestimate of the true effect size due to publication bias (Nosek et al. 2021). Second, the power analysis will only
yield the sample size at which the replication will have a particular chance of rejecting the null at some criterion.
But it’s quite possible that the original experiment could be 𝑝 < .05, the replication could be 𝑝 > .05, and 3)
the original experiment and the replication results are not significantly different from each other. So a statistically
significant replication of the original effect size is not necessarily what you want to aim for.
Faced with these issues, a replication sample size can be planned in several other ways. First, replicators can use stan-
dard strategies above such as SESOI or resource-based planning to rule out large effects, either with high probability
or within a known amount of time or money. If the SESOI is high or limited resources are allocated, these strategies
can produce an inconclusive result, however. A conclusive answer can require a very substantial commitment of
resources.
Second, Simonsohn (2015) recommends the “small telescopes” approach. The idea is not to test whether there is
an effect, but rather where there is an effect large enough that the original study could have detected it. The analogy is to
astronomy. If a birdwatcher points their binoculars at the sky and claims to have discovered a new planet, we want
to ask not just whether there is a planet at that location, but also whether there is any possibility that they could
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have seen it using binoculars – if not, perhaps they are right but for the wrong reasons! Simonsohn shows that, if
a replicator collects 2.5 times as large a sample as the original, they have 80% power to detect any effect that was
reasonably detectable by the original. This simple rule of thumb provides one good starting place for conservative
replication studies.
Finally, replicators can make use of sequential Bayesian analysis, in which they attempt to gather substantial evi-
dence relative to the support for 𝐻1 or 𝐻0. Sequential bayes is an appealing option because it allows for efficient
collection of data that reflects whether an effect is likely to be present in a particular sample, especially in the face
of the sometimes prohibitively large samples necessary for SESOI or “small telescopes” analyses.

10.5 Chapter summary: Sampling
Your goal as an experimenter is to estimate a causal effect. But the effect
for whom? This chapter has tried to help you think about how you
generalize from your experimental sample to some target population.
It’s very rare to be conducting an experiment based on a probability
sample in which everymember of the population has an equal chance of
being selected. In the case that you are using a convenience sample, you
will need to consider how bias introduced by the sample could relate
to the effect estimate you observed. Do you think this effect is likely
to be very heterogeneous in the population? Are there theories that
suggest that it might be larger or smaller for the convenience sample
you recruited?
Questions about generalizability and sampling depend on the precise
construct you are studying, and there is no mechanistic procedure for
answering them. Instead, you simply have to ask yourself: how does
my sampling procedure qualify the inference I want to make based on
my data? Being transparent about your reasoning can be very helpful –
both to you and to readers of your work who want to contextualize the
generality of your findings.

DISCUSSION QUESTIONS

1. We want to understand human cognition generally, but do you think it is a more efficient research strategy to
start by studying certain features of cognition (perception, for example) in WEIRD convenience populations
and then later check our generalizations in non-WEIRD groups? What are the arguments against this efficiency-
based strategy?

2. One alternative position regarding sampling is that the most influential experiments aren’t generalizations of
some number to a population; they are demonstration experiments that show that some particular effect is
possible under some circumstances (think Milgram’s conformity studies, see Chapter 4). On this argument, the
specifics of population sampling are often secondary. Do you think this position makes sense?

3. One line of argument says that we can’t evermake generalizations about the humanmind because somuch of the
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historical human population is simply inaccessible to us (we can’t do experiments on ancient Greek psychology).
In other words, sampling from a particular population is also sampling a particular moment in time. How should
we qualify our research interpretations to deal with this issue?

READINGS

– The original polemic article on the WEIRD problem: Henrich, J., Heine, S. J., & Norenzayan, A. (2010). The
WEIRDest people in the world? Behavioral and Brain Sciences, 33, 61-83.

– A very accessible introduction to power analysis from its originator: Cohen, J. (1992) A power primer. Psycho-
logical Bulletin, 112, 155-9.

– A thoughtful and in-depth discussion of generalizability issues: Yarkoni, T. (2020). The generalizability crisis.
Behavioral and Brain Sciences, 45, 1-37.



PART IV

EXECUTION
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🍏 LEARNING GOALS

– Recognize the dangers of researcher degrees of freedom
– Understand the differences between exploratory and confirmatory modes of research
– Articulate how preregistration can reduce risk of bias and increase transparency

When not planned beforehand, data analysis can approxi-
mate a projective technique, such as the Rorschach, because
the investigator can project on the data his own expectan-
cies, desires, or biases and can pull out of the data almost
any “finding” he may desire.
— Theodore X. Barber (1976)

The first principle is that you must not fool yourself–and
you are the easiest person to fool… After you’ve not fooled
yourself, it’s easy not to fool other scientists. You just have
to be honest in a conventional way after that.
— Richard Feynman (1974)

The last section of the book focused on planning a study – in particular,
making decisions around measurement, design, and sampling. In this
next section, we turn to the nuts and bolts of executing a study. We start
with preregistration (this chapter), before discussing the logistics of data
collection (Chapter 12) and project management (Chapter 13). These
chapters touch on the themes of transparency and bias reduction through
decisions about how to document and organize your data collection.
Let’s start with simply documenting choices about design and analysis.
Although there are plenty of incorrect ways to design and analyse exper-
iments, there is no single correct way. In fact, most research decisions
have many justifiable choices – sometimes called “researcher degrees of
freedom”. For example, will you stop data collection after 20, 200, or
2000 participants? Will you remove outlier values and how will you
define them? Will you conduct subgroup analyses to see whether the
results are affected by sex, or age, or some other factor?
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Consider a simplified, hypothetical case where you have to make five
analysis decisions and there are five justifiable choices for each decision
— this alone would result in 3125 (55) unique ways to analyze the data!
If you were to make these decisions post hoc (after observing the data)
then there’s a danger your decisions will be influenced by the outcome
of the analysis (“data-dependent decision making”) and skew towards
choices that generate outcomes more aligned with your personal prefer-
ences. Now think back to the last time you read a research paper. Of all
the possible ways that the data could have been analyzed, how do you
know that the researchers did not just select the approach that generated
results most favourable to their pet hypothesis?
In this chapter, we will find out why flexibility in the design, analy-
sis, reporting, and interpretation of experiments, combined with data-
dependent decision-making, can introduce bias, and lead to scientists
fooling themselves and each other. Wewill also learn about preregistra-
tion, the process of writing down and registering your research decisions
before you observe the data. Preregistration intersects with two of our
themes: it can be used to REDUCE BIAS in our data analysis, and it can pro-
vide the TRANSPARENCY that other scientists need to properly evaluate
and interpret our results (Hardwicke and Wagenmakers 2022).

CASE STUDY

Undisclosed analytic flexibility?
Educational apps for children are a hugemarket, but relatively few randomized trials have been done to see whether
or when they produce educational gains. Filling this important gap, Berkowitz et al. (2015) reported a high-quality
field experiment of a free educational app, “Bedtime Math at Home,” with participants randomly assigned to either
math or reading conditions over the course of a full school year. Critically, along with random assignment, the
study also included standardized measures of math and reading achievement. These measures allowed the authors
to compute effects in grade-level equivalents, a meaningful unit from a policy perspective.

Figure 11.1: Model fits reported in Figure 1 of Berkowitz et al. (2015). Estimated years of math achievement gained over the
school year across groups, as a function of app usage level.
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The key result is shown in Figure 11.1. Families who used the math app frequently showed greater gains in math
than the control group. Although this finding appeared striking, the figure didn’t directly visualize the primary
causal effect of interest, namely the size of the effect of study condition on math scores. Instead the data were
presented as estimated effects for specific levels of app usage.
Because the authors made their data openly available, it was possible for Frank (2016) to do a simple analysis to
examine the causal effect of interest. When not splitting the data by usage and adjusting by covariates, there was no
significant main effect of the intervention on math performance Figure 11.2. Since this analysis was not favorable
to the primary intervention – and because it was not reported in the paper – it could have been the case that
the authors had analyzed the data several ways and chosen to present an analysis that was more favorable to their
hypotheses of interest.

Figure 11.2: Estimated years of math achievement gained over the school year across groups in the Berkowitz et al. (2016) math
app trial. Error bars show bootstrapped 95% confidence intervals. Based on Frank (2016).

As is true for many papers prior to the rise of preregistration, it’s not possible to know definitively whether the
reported analysis in Berkowitz et al. (2015) was influenced by the authors’ desired result. As we’ll see below, such
data-dependent analyses can lead to substantial bias in reported effects. This uncertainty about a paper’s analytic
strategy can be avoided by the use of preregistration. In this case, preregistration would have convinced readers that
the analyses decisions were not influenced by the data, thereby increasing the value of this otherwise high-quality
study.

11.1 Lost in a garden of forking paths
One way to visualize researcher degrees of freedom is as a vast decision
tree or “garden of forking paths” (Figure 11.3). Each node represents
a decision point and each branch represents a justifiable choice. Each
unique pathway through the garden terminates in an individual research
outcome.
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Figure 11.3: The garden of forking paths:
many justifiable but different analytic
choices are possible for an individual
dataset.

1 We say “risk of bias” rather than just
“bias” because in most scientific con-
texts, we do not have a known ground
truth to compare the results to. So in
any specific situation, we do not know
the extent to which data-dependent de-
cisions have actually biased the results.

Because scientific observations typically consist of both noise (random
variation unique to this sample) and signal (regularities that will reoccur
in other samples), some of these pathways will inevitably lead to results
that are misleading (e.g., inflated effect sizes, exaggerated evidence, or
false positives). The more potential paths in the garden that you might
explore, the higher the chance of encountering misleading results.
Statisticians refer to this issue as a multiplicity (multiple comparisons)
problem. Aswe talked about in Chapter 6, multiplicity can be addressed
to some extent with statistical countermeasures, like the Bonferroni cor-
rection; however, these adjustment methods need to account for ev-
ery path that you could have taken (Gelman and Loken 2014; de Groot
1956/2014). When you navigate the garden of forking paths while
working with the data, it is easy to forget – or even be unaware of –
every path that you could have taken, so these methods can no longer
be used effectively.
The signal-to-noise ratio is worse in particular situations (as com-
mon in psychology) with small effect sizes, high variation, and large
measurement errors (Ioannidis 2005). Researcher degrees of freedom
may be constrained to some extent by strong theory (Oberauer and
Lewandowsky 2019), communitymethodological norms, or replication
studies, though these constraints may be more implicit than explicit,
and can still leave plenty of room for flexible decision-making.

11.1.1 Data-dependent analysis
When a researcher navigates the garden of forking paths during data
analysis, their choices might be influenced by the data (data-dependent
decision making) which can introduce bias. If a researcher is seeking
a particular kind of result (see Depth box below), then they are more
likely to follow the branches that steer them in that direction.
You could think of this a bit like playing a game of “hot ( ) or cold ( )”
where indicates that the choice will move the researcher closer to a
desirable overall result and indicates that the choice will move them
further away. Each time the researcher reaches a decision point, they
try one of the branches and get feedback on how that choice affects the
results. If the feedback is then they take that branch. If the answer
is , they try a different branch. If they reach the end of a complete
pathway, and the result is , maybe they even retrace their steps and try
some different branches earlier in the pathway. This strategy creates a
risk of bias because it systematically skews results towards researcher’s
preferences (Hardwicke and Wagenmakers 2022).1
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 DEPTH

Only human: Cognitive biases and skewed incentives
There’s a storybook image of the scientist as an objective, rational, and dispassionate arbiter of truth (Veldkamp et
al. 2017). But in reality, scientists are only human: they have egos, career ambitions, and rent to pay! So even if we
do want to live up to the storybook image, its important to acknowledge that our decisions and behavior are also
influenced by a range of cognitive biases and external incentives that can steer us away from that goal. Let’s first
look at some relevant cognitive biases that might lead scientists astray:

– Confirmation bias: Preferentially seeking out, recalling, or evaluating information in a manner that reinforces
one’s existing beliefs (Nickerson 1998).

– Hindsight bias: Believing that past events were always more likely to occur relative to our actual belief in their
likelihood before they happened (“I knew it all along!”) (Slovic and Fischhoff 1977).

– Motivated reasoning: Rationalizing prior decisions so they are framed in a favorable light, even if they were
irrational (Kunda 1990).

– Apophenia: Detecting seemingly meaningful patterns in noise (Gilovich, Vallone, and Tversky 1985).

To make matters worse, the incentive structure of the scientific ecosystem often adds additional motivation to get
things wrong. The allocation of funding, awards, and publication prestige is often based on the nature of research
results rather than research quality (Smaldino and McElreath 2016; Nosek, Spies, and Motyl 2012). For example,
many academic journals, especially those that are widely considered to be the most prestigious, appear to have a
preference for novel, positive, and statistically significant results over incremental, negative, or null results (Bakker,
Dijk, and Wicherts 2012). There is also pressure to write articles with concise, coherent, and compelling narratives
(Giner-Sorolla 2012). This set of forces incentivizes scientists to be “impressive” over being right and encourages
questionable research practices. The process of iteratively p-hacking and HARKing one’s way to a “beautiful”
scientific paper has been dubbed “The Chrysalis Effect” (O’Boyle, Banks, and Gonzalez-Mulé 2017), illustrated in
Figure 11.4.

Figure 11.4: The Chrysalis Effect, when ugly truth becomes a beautiful fiction.

In sum, scientists’ human flaws – and the scientific ecosystem’s flawed incentives – highlight the need for trans-
parency and intellectual humility when reporting the findings of our research (Hoekstra and Vazire 2021).
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2 “If you torture the data long enough,
it will confess” (Good 1972).

Figure 11.5: By deliberately exploit-
ing analytic flexibility in the processing
pipeline of fMRI data, Bennett, Miller,
and Wolford (2009) were able to iden-
tify ‘brain activity’ in a dead Atlantic
Salmon. From Bennett, Miller, and Wol-
ford (2009) (licensed under CC BY).

3 In practice, an individual study may
contain both exploratory and confirma-
tory aspects which is why we describe
them as different “modes.”

In the most egregious cases, a researcher may try multiple pathways un-
til they obtain a desirable result and then selectively report that result,
neglecting to mention that they have tried several other analysis strate-
gies (also known as 𝑝-hacking, a practice we’ve discussed throughout
the book).2 You may remember an example of this practice in Chap-
ter 3, where participants apparently became younger when they listened
to “When I’m 64” by The Beatles. Another example of how damaging
the garden of forking paths can be comes from the “discovery” of brain
activity in a dead Atlantic Salmon! Researchers deliberately exploited
flexibility in the fMRI analysis pipeline and avoided multiple compar-
isons corrections, allowing them to find brain activity where there was
only dead fish Figure 11.5.

11.1.1 Hypothesizing after results are known
In addition to degrees of freedom in experimental design and analysis,
there is additional flexibility in how researchers interpret research results.
As we discussed in Chapter 2, theories can accommodate even conflict-
ing results in many different ways – for example, by positing auxiliary
hypotheses that explain why a particular datapoint is special.
The practice of selecting or developing your hypothesis after observing
the data has been called “Hypothesizing After the Results are Known”,
or “HARKing” (Kerr 1998). HARKing is potentially problematic be-
cause it expands the garden of forking paths and helps to justify the use
of various additional design and analysis decisions (Figure 11.6). For
example, you may come up with an explanation for why an interven-
tion is effective in men but not in women in order to justify a post-hoc
subgroup analysis based on sex (see Case Study. The extent to which
HARKing is problematic is contested (for discussion see Hardwicke and
Wagenmakers 2022). But at the very least it’s important to be honest
about whether hypotheses were developed before or after observing the
data.
But hang on aminute! Isn’t it a good thing to seek out interesting results
if they are there in the data? Shouldn’t we “let the data speak”? The
answer is yes! But it’s crucial to understand the distinction between ex-
ploratory and confirmatory modes of research.3 Confirmation involves
making research decisions before you’ve seen the data whereas explo-
ration involves making research decisions after you’ve seen data.
The key things to remember about exploratory research are that you
need to (1) be aware of the increased risk of bias arising from data-
dependent decision making and calibrate your confidence in the results
accordingly; (2) be honest with other researchers about your analysis
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Figure 11.6: A grid of individual re-
search results. The horizontal axis pro-
vides a simplified illustration of themany
justifiable design and analysis choices
that a scientist can use to generate the
evidence. The vertical axis illustrates
that there are often several potential hy-
potheses which could be constructed or
selected when interpreting the evidence.
An unconstrained scientist can simulta-
neously fit evidence to hypotheses and
fit hypotheses to evidence in order to ob-
tain their preferred overall result.

strategy so they are also aware of the risk of bias and can calibrate their
confidence in the outcomes accordingly. In the next section, we will
learn about how preregistration helps us to make this important distinc-
tion between exploratory and confirmation research.

11.2 Reducing risk of bias, increasing transparency, and
calibrating confidence with preregistration

You can counter the problem of researcher degrees of freedom and data-
dependent decision-making by making research decisions before you
have seen the data – like planning your route through the garden of
forking paths before you start your journey (Wagenmakers et al. 2012;
Hardwicke and Wagenmakers 2022). If you stick to the planned route,
then you have eliminated the possibility that your decisions were influ-
enced by the data.
Preregistration is the process of declaring your research decisions in
a public registry before you analyze (and often before you collect)
the data. Preregistration ensures that your research decisions are
data-independent, which reduces risk of bias arising from the issues
described above. Preregistration also transparently conveys to others
what you planned, helping them to determine the risk of bias and
calibrate their confidence in the research results. In other words,
preregistration can dissuade researchers from engaging in questionable
research practices like p-hacking and HARKing, because they can
be held accountable to their original plan, while also providing the
context needed to properly evaluate and interpret research.
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Figure 11.7: Preregistration clarifies
where research activities fall on the con-
tinuum of prespecification. When the
preregistration provides little constraint
over researcher degrees of freedom (i.e.,
more exploratory research), decisions
are more likely to be data-dependent,
and consequently there is a higher risk
of bias. When preregistration provides
strong constraint over researcher degrees
of freedom (i.e., more confirmatory re-
search), decisions are less likely to be
data-dependent, and consequently there
is a lower risk of bias. Exploratory re-
search activities are more sensitive to
serendipitous discovery, but also have a
higher risk of bias relative to confirma-
tory research activities. Preregistration
transparently communicates where par-
ticular results are located along the con-
tinuum, helping readers to appropriately
calibrate their confidence.

Preregistration does not require that you specify all research decisions
in advance, only that you are transparent about what was planned, and
what was not planned. This transparency helps to make a distinction be-
tween which aspects of the research were exploratory and which were
confirmatory (Figure 11.7). All else being equal, we should have more
confidence in confirmatory results, because there is a lower risk of bias.
Exploratory results have a higher risk of bias, but they are also more
sensitive to serendipitous (unexpected discoveries. So the confirmatory
mode is best suited to testing hypotheses and the exploratory mode is
best suited to generating them. Therefore, exploratory and confirma-
tory research are both valuable activities – it is just important to dif-
ferentiate them (Tukey 1980)! Preregistration offers the best of both
worlds by clearly separating one from the other.
In addition to the benefits described above, preregistrationmay improve
the quality of research by encouraging closer attention to study plan-
ning. We’ve found that the process of writing a preregistration really
helps facilitate communication between collaborators, and can catch
addressable problems before time and resources are wasted on a poorly
designed study. Detailed advanced planning can also create opportuni-
ties for useful community feedback, particularly in the context of Reg-
istered Reports (see Depth box below), where dedicated peer reviewers
will evaluate your study before it has even begun.
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 DEPTH

Preregistration and friends: A toolbox to address researcher degrees of freedom
Several useful tools can be used to complement or extend preregistration. In general, we would recommend that
these tool are combined with preregistration, rather than used as a replacement because preregistration provides
transparency about the research and planning process (Hardwicke and Wagenmakers 2022). The first two of these
are discussed in more detail in the last section of Chapter 7.
Robustness checks. Robustness checks (also called “sensitivity analyses”) assess how different decision choices in
the garden of forking paths affect the eventual pattern of results. This technique is particularly helpful when you
have to choose between several justifiable analytic choices, neither of which seem superior to the other, or which
have complementary strengths and weaknesses. For example, you might run the analysis three times using three
different methods for handling missing data. Robust results should not vary substantially across the three different
choices.
Multiverse analyses. Recently, some researchers have started running large-scale robustness checks called “mul-
tiverse” (Steegen et al. 2016) or “specification curve” (Simonsohn, Simmons, and Nelson 2020) analyses. We
discussed these a bit in Chapter 7. Some have argued that these large-scale robustness checks make preregistra-
tion redundant; after all, why prespecify a single path if you can explore them all (Rubin 2020; Oberauer and
Lewandowsky 2019)? But interpreting the results of a multiverse analysis are not straightforward; for example,
it seems unlikely that all of the decision choices are equally justifiable (Giudice and Gangestad 2021). Further-
more, if multiverse analyses are not preregistered, then they introduce researcher degrees of freedom, and create an
opportunity for selective reporting, which increases risk of bias.
Held-out sample. One option to benefit from both exploratory and confirmatory research modes is to split your
data into training and test samples. (The test sample is commonly called the “held out” because it is “held out”
from the exploratory process.) You can generate hypotheses in an exploratory mode in the training sample and
use that as the basis to preregister confirmatory analyses in the hold-out sample. A notable disadvantage of this
strategy is that splitting the data reduces statistical power, but in cases where data are plentiful – including in much
of machine learning – this technique is the gold standard.
Masked analysis (traditionally called “blind analysis”). Sometimes problems, such as missing data, attrition, or
randomization failure that you did not anticipate in your preregistered plan can arise during data collection. Howdo
you diagnose and address these issues without increasing risk of bias through data-dependent analysis? One option
is masked analysis, which disguises key aspects of the data related to the results (for example, by shuffling condition
labels or adding noise) while still allowing some degree of data inspection (Dutilh, Sarafoglou, and Wagenmakers
2019). After diagnosing a problem, you can adjust your preregistered plan without increasing risk of bias, because
your decisions have not been influenced by the results.
Standard Operating Procedures. Community norms, perhaps at the level of your research field or lab, can act as a
natural constraint on researcher degrees of freedom. For example, there may be a generally accepted approach for
handling outliers in your community. You can make these constraints explicit by writing them down in a Standard
Operating Procedures document – a bit like a living meta-preregistration (Lin and Green 2016).
Open lab notebooks. Maintaining a lab notebook can be a useful way to keep a record of your decisions as a research
project unfolds. Preregistration is bit like taking a snapshot of your lab notebook at the start of the project, when
all you have written down is your research plan. Making your lab notebook publicly available is a great way to
transparently document your research and departures from the preregistered plan.
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Figure 11.8: Registered Reports (from https://www.cos.io/initiatives/registered-reports, licensed under CC BY 4.0).

Registered Reports. Registered Reports are a type of article format that embeds preregistration directly into the
publication pipeline , Figure 11.8. The idea is that you submit your preregistered protocol to a journal and it is
peer reviewed, before you’ve even started your study. If the study is approved, the journal agrees to publish it,
regardless of the results. This is a radical departure from traditional publication models where peer reviewers and
journals evaluate your study after its been completed and the results are known. Because the study is accepted for
publication independently of the results, Registered Reports can offer the benefits of preregistration with additional
protection against publication bias. They also provide a great opportunity to obtain feedback on your study design
while you can still change it!

11.3 How to preregister
High-stakes studies such as medical trials must be preregistered (Dick-
ersin and Rennie 2012). In 2005, a large international consortium of
medical journals decided that they would not publish unregistered tri-
als. The discipline of economics also has strong norms about study reg-
istration (see e.g. https://www.socialscienceregistry.org). But preregis-
tration is pretty new to psychology (Nosek et al. 2018), and there’s still
no standard way of doing it – you’re already at the cutting edge!
We recommend using the Open Science Framework (OSF) as your reg-
istry. OSF is one of the most popular registries in psychology and you
can do lots of other useful things on the platform to make your research
transparent, like sharing data, materials, analysis scripts, and preprints.
On OSF it is possible to “register” any file you have uploaded. When
you register a file, it creates a time-stamped, read-only copy, with a ded-
icated link. You can add this link to articles reporting your research.

https://www.cos.io/initiatives/registered-reports
https://www.socialscienceregistry.org
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4 You can think of a study protocol a
bit like a research paper without a results
and discussion section (here’s an exam-
ple from one of our own studies: https:
//osf.io/2cnkq/).

5 https://help.osf.io/hc/en-
us/articles/360019738834-Create-
a-Preregistration

Table 11.1: Preregistration template outline.

Question
1 Data collection. Have any data been collected for this study already?
2 Hypothesis. What’s the main question being asked or hypothesis being

tested in this study?
3 Dependent variable. Describe the key dependent variable(s) specifying how

they will be measured.
4 Conditions. How many and which conditions will participants be assigned

to?
5 Analyses Specify exactly which analyses you will conduct to examine the

main question/hypothesis.
6 Outliers and Exclusions. Describe exactly how outliers will be defined and

handled, and your precise rule(s) for excluding observations.
7 Sample Size. How many observations will be collected or what will

determine sample size? No need to justify decision, but be precise about
exactly how the number will be determined.

8 Other. Anything else you would like to pre-register? (e.g., secondary
analyses, variables collected for exploratory purposes, unusual analyses
planned?

One approach to preregistration is to write a protocol document that
specifies the study rationale, aims or hypotheses, methods, and analysis
plan, and register that document.4 OSF also has a collection of dedi-
cated preregistration templates that you can use if you prefer. An out-
line of such a template is shown in Table 11.1. These templates are
often tailored to the needs of particular types of research. For exam-
ple, there are templates for general quantitative psychology research
(“PRP-QUANT,” Bosnjak et al. 2022), cognitive modelling (Crüwell
and Evans 2021), and secondary data analysis (Akker et al. 2019). The
OSF interface may change, but currently this guide5 provides a set of
steps to create a preregistration.
Once you’ve preregistered your plan, you just go off and run the study
and report the results, right? Well hopefully… but things might not
turn out to be that straightforward. It’s quite common to forget to in-
clude something in your plan or to have to depart from the plan due
to something unexpected. Preregistration can actually be pretty hard in
practice (Nosek et al. 2019)!
Don’t worry though - remember that a key goal of preregistration
is transparency to enable others to evaluate and interpret research
results. If you decide to depart from your original plan and conduct
data-dependent analyses, then this decision may increase the risk of
bias. But if you communicate this decision transparently to your
readers, they can appropriately calibrate their confidence in the results.
You may even be able to run both the planned and unplanned analyses

https://osf.io/2cnkq/
https://osf.io/2cnkq/
https://help.osf.io/hc/en-us/articles/360019738834-Create-a-Preregistration
https://help.osf.io/hc/en-us/articles/360019738834-Create-a-Preregistration
https://help.osf.io/hc/en-us/articles/360019738834-Create-a-Preregistration
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6 https://doi.org/10.31222/osf.io/
wt5ny

7 https://www.cos.io/blog/
preregistration-plan-not-prison

as a robustness check (see Depth box) to evaluate the extent to which
this particular choice impacts the results.
When you report your study, it is important to distinguish between
what was planned and what was not. If you ran a lot of data-dependent
analyses, then it might be worth having separate exploratory and confir-
matory results sections. On the other hand, if you mainly stuck to your
original plan, with only minor departures, then you could include a ta-
ble (perhaps in an appendix) that outlines these changes (for example,
see Supplementary Information A of this article6).

11.4 Chapter summary: Preregistration
We’ve advocated here for preregistering your study plan. This practice
helps to reduce the risk of bias caused by data-dependent analysis (the
“garden of forking paths” that we described) and transparently commu-
nicate the risk of bias to other scientists. Importantly, preregistration is
a “plan, not a prison7”: in most cases preregistered, confirmatory anal-
yses coexist with exploratory analyses. Both are an important part of
good research – the key is to disclose which is which!

DISCUSSION QUESTIONS

1. P-hack your way to scientific glory! To get a feel for how data-dependent analyses might work in practice, have
a play around with this app: https://projects.fivethirtyeight.com/p-hacking/. Do you think preregistration
would affect your confidence in claims made about this dataset?

2. Preregister your next experiment! The best way to get started with preregistration is to have a go with your next
study. Head over to https://osf.io/registries/osf/new and register your study protocol or complete one of the
templates. What aspects of preregistration did you find most difficult and what benefits did it bring?

READINGS

– Nosek, B. A., Ebersole, C. R., DeHaven, A. C., & Mellor, D. T. (2018). The preregistration revolution. Proceed-
ings of the National Academy of Sciences, 115, 2600–2606. https://doi.org/10.1073/pnas.1708274114.
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1 The metaphor of “collection” implies
to some researchers that the data exist in-
dependent of the researcher’s own per-
spective and actions, so they reject it in
favor of the term “data generation.” Un-
fortunately, this alternative label doesn’t
distinguish generating data via interac-
tions with participants on the one hand
and generating data from scratch via sta-
tistical simulations on the other. We
worry that “data generation” sounds too
much like the kinds of fraudulent data
generation that we talked about in Chap-
ter 4, so we have opted to keep the more
conventional “data collection” label.

12 DATA COLLECTION

🍏 LEARNING GOALS

– Outline key features of informed consent and participant debriefing
– Identify additional protections necessary for working with vulnerable populations
– Review best practices for online and in-person data collection
– Implement data integrity checks, manipulation checks, and pilot testing

You have selected your measure and manipulation and planned your
sample. Your preregistration is set. Now it’s time to think about the
nuts and bolts of collecting data. Though the details may vary between
contexts, this chapter will describe some general best practices for data
collection.1 We organize our discussion of these practices around two
perspectives: the participant and the researcher.
The first section takes the perspective of a participant. We begin by
reviewing the importance of informed consent. A key principle of run-
ning experiments with human participants is that we respect their au-
tonomy, which includes their right to understand the study and choose
whether to take part. When we neglect the impact of our research on
the people we study, we not only violate regulations governing research,
we also create distrust that undermines the moral basis of scientific re-
search.
In the second section, we begin to shift perspectives, discussing the
choice of online vs. in-person data collection and some of the advan-
tages of online data collection for TRANSPARENCY. We consider how to
optimize the experimental experience for participants in both settings.
We then end by taking the experimenter’s perspective more fully, dis-
cussing how we can maximize data quality (contributing to MEASURE-
MENT PRECISION) using pilot testing, manipulation checks, and attention
checks, while still being cognizant of both changes to the participant’s
experience and the integrity of statistical inferences (both contributing
to BIAS REDUCTION).
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CASE STUDY

The rise of online data collection
Since the rise of experimental psychology laboratories in university settings during the period after World War 2
(Benjamin 2000), experiments have typically been conducted by recruiting participants fromwhat has been referred
to as the “subject pool.” This term denotes a group of people who can be recruited for experiments, typically stu-
dents from introductory psychology courses (Sieber and Saks 1989) who are required to complete a certain number
of experiments as part of their course work. The ready availability of this convenient population inevitably led
to the massive over-representation of undergraduates in published psychology research, undermining its generaliz-
ability (Sears 1986; Henrich, Heine, and Norenzayan 2010).
Yet over the last couple of decades, there has been a revolution in data collection. Instead of focusing on university
undergraduates, increasingly, researchers recruit individuals from crowdsourcing websites like Amazon Mechanical
Turk and ProlificAcademic. Crowdsourcing serviceswere originally designed to recruit and payworkers for ad-hoc
business tasks like retyping receipts, but they have also become marketplaces to connect researchers with research
participants who are willing to complete surveys and experimental tasks for small payments (Litman, Robinson,
and Abberbock 2017). As of 2015, more than a third of studies in top social and personality psychology journals
were conducted on crowdsourcing platforms (another third were still conducted with college undergraduates) and
this proportion is likely continuing to grow (Anderson et al. 2019).
Initially, many researchers worried that crowdsourced data from online convenience samples would lead to a de-
crease in data quality. However, several studies suggest that data quality from online convenience samples is typ-
ically comparable to in-lab convenience samples (Mason and Suri 2012; Buhrmester, Kwang, and Gosling 2011).
In one particularly compelling demonstration, a set of online experiments were used to replicate a group of classic
phenomena in cognitive psychology, with clear successes on every experiment except those requiring sub-50 mil-
lisecond stimulus presentation (Crump, McDonnell, and Gureckis 2013). Further, as we discuss below, researchers
have developed a suite of tools to ensure that online participants understand and comply with the instructions in
complex experimental tasks.
Since these initial successes, however, attention has moved away from the validity of online experiments to the
ethical challenges of engaging with crowdworkers. In 2020, nearly 130,000 people completed MTurk studies (Moss
et al. 2020). Of those, an estimated 70% identified as White, 56% identified as women, and 48% had an annual
household income below $50,000. A sampling of crowd work determined that the average wage earned was just
$2.00 per hour, and less than 5% of workers were paid at least the federal minimum wage (Hara et al. 2018).
Further, many experimenters routinelywithheld payment fromworkers based on their performance in experiments.
These practices clearly violate ethical guidelines for research with human participants, but are often overlooked by
institutional review boards who may be unfamiliar with online recruitment platforms or consider that platforms
are offering a “service” rather than simply being alternative routes for paying individuals.
With greater attention to the conditions of workers (e.g., Salehi et al. 2015), best practices for online research have
progressed considerably. Aswe describe below, workingwith online populations requires attention to both standard
ethical issues of consent and compensation, as well as new issues around the “user experience” of participating
in research. The availability of online convenience samples can be transformative for the pace of research, for
example by enabling large studies to be run in a single day rather than over many months. But online participants
are vulnerable in different ways than university convenience samples, and we must take care to ensure that research
online is conducted ethically.
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12.1 Informed consent and debriefing
Aswe discussed in Chapter 4, experimenters must respect the autonomy
of their participants: they must be informed about the risks and bene-
fits of participation before they agree to participate. Researchers must
also discuss and contextualize the research by debriefing participants af-
ter they have completed the study. Here we look at the nuts and bolts
of each of these processes, ending with guidance on the special protec-
tions that are required to protect the autonomy of especially vulnerable
populations.

12.1.1 Getting consent
Experimental participants must give consent. In most regulatory frame-
works, there are clear guidelines about what the process of giving con-
sent should look like. Typically participants are expected to read and
sign a consent form: a document that explains the goals of the research
and its procedures, describes potential risks and benefits, and asks for
participants’ explicit consent to participate voluntarily. Table 12.1 gives
the full list of consent form requirements from the US Office for Hu-
man Research Protections, and Figure 12.1 shows how these individual
requirements are reflected in a real consent form used in our research.

Table 12.1: US Office of Human Research Protections requirements for a consent form
(edited for length).

Requirement
1 A statement that the study involves research
2 An explanation of the purposes of the research
3 The expected duration of the subject’s participation
4 A description of the procedures to be followed
5 Identification of any procedures which are experimental
6 A description of any reasonably foreseeable risks or discomforts to the subject
7 A description of any benefits to the subject or to others which may reasonably be

expected from the research
8 A disclosure of appropriate alternative procedures or courses of treatment, if any,

that might be advantageous to the subject
9 A statement describing the extent, if any, to which confidentiality of records

identifying the subject will be maintained
10 For research involving more than minimal risk, an explanation as to whether any

compensation or medical treatments are available if injury occurs
11 An explanation of whom to contact for answers to pertinent questions about the

research and research subjects’ rights
12 A statement that participation is voluntary, refusal to participate will involve no

penalty, and that subject may discontinue participation at any time without
penalty
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2 Some experimenters worry that in-
forming participants about the study that
they are about to participate in may in-
fluence their behavior in the study via
so-called “demand characteristics”, dis-
cussed in Chapter 9. But the goal of a
consent form is not to explain the spe-
cific psychological construct being ma-
nipulated. Instead, a consent form typ-
ically focuses on the experience of being
in the study (for example, that a partic-
ipant would be asked to provide quick
verbal responses to pictures). This sort
of general explanation should not create
demand characteristics.

Figure 12.1: Consent form annotated to
show how specific text fulfills the re-
quirements in Table 12.1. Categories 5,
8, and 10 were not required for this min-
imal risk psychology experiment.

These are just samples. Since ethics regulation is almost always man-
aged at the institutional level, your local ethics board will often provide
guidance on the specific information you should include in the consent
form and they will almost always need to approve the form before you
are allowed to begin recruiting participants.
When providing consent information, researchers should focus on what
someone might think or feel as a result of participating in the study. Are
there any physical or emotional risks associated? What should someone
know about the study that may give them pause about agreeing to par-
ticipate in the first place? Our advice is to center the participant in the
consent process rather than the research question. Information about
specific research goals can typically be provided during debriefing.2
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3 Some ethics boards will ask for con-
sent for sharing even anonymized data
files. As we discuss in Chapter 13, fully
anonymized data can often be shared
without explicit consent. You may still
choose to ask participants’ permission,
but this practice may lead to an awkward
situation, for example, a dataset with
heterogeneous sharing permissions such
that most but not all data can be shared
publicly. Norms around anonymized
data sharing are shifting, so it’s worth
having a conversation with your ethics
board about how they interpret your par-
ticular regulatory obligations.

If there are specific pieces of information that about study goals or proce-
dures that must be withheld from participants during consent, deception
of participants may be warranted. Deception can be approved by ethics
boards as long as it poses little risk and is effectively addressed via more
extensive debriefing. But an experimental protocol that includes de-
ception will likely undergo greater scrutiny during ethics review, as it
must be justified by a specific experimental need.
During the consent process, researchers should explain to participants
what will be done with their data. Requirement 9 in Table 12.1 asks for
a statement about data confidentiality, but such a statement is a mere
minimum. Some modern consent forms explicitly describe different
uses of the data and ask for consent for each. For example, the form in
Figure 12.1 asks permission for showing recordings as part of presenta-
tions.3

12.1.2 Prerequisites of consent
In order to give consent, participants must have the cognitive capacity
to make decisions (competence), understand what they are being asked
to do (comprehension), and know that they have the right to withdraw
consent at any time (voluntariness) (Kadam 2017).
Typically, we assume competence for adult volunteers in our experi-
ments, but if we are working with children or other vulnerable popula-
tions (see below), wemay need to considerwhether they are legally com-
petent to provide consent. Participants who cannot consent on their
own should still be informed about participation in an experiment and,
if possible, you should still obtain their assent (informal agreement) to
participate. When a person has no legal ability to consent, you must
obtain consent from their legal guardian. But if they do not assent, you
should also respect their decision not to participate – even if you previ-
ously obtained consent from their guardian.
The second prerequisite is comprehension. It is good practice to dis-
cuss consent forms verbally with participants, especially if the study is
involved and takes place in person. If the study is online, ensure that
participants know how to contact you if they have questions about the
study. The consent form itself must be readable for a broad audience,
meaning care should be taken to use accessible language and clear for-
matting. Consider giving participants a copy of the consent form in
advance so they can read at their own pace, think of any questions they
might have, and decide how to proceed without any chance of feeling
coerced (Young, Hooker, and Freeberg 1990).
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4 At the study’s conclusion, you might
also consider sharing any findings with
participants – many participants appreci-
ate learning about research findings that
they contributed to, even months or
years after participation.

Finally, participants must understand that their involvement is volun-
tary, meaning that they are under no obligation to be involved in a
study and always have the right to withdraw at any time. Experimenters
should not only state that participation is voluntary, they should also pay
attention to other features of the study environment that might lead to
structural coercion (Fisher 2013). For example, high levels of compen-
sation can make it difficult for lower-income participants to withdraw
from research. Similarly, factors like race, gender, and social class can
lead participants to feel discomfort around discontinuing a study. It is
incumbent on experimenters to provide a comfortable study environ-
ment and to avoid such coercive factors wherever possible.

12.1.3 Debriefing participants
Once a study is completed, researchers should always debrief partici-
pants. A debriefing is composed of sevearl parts: (1) gratitude, (2) dis-
cussion of goals, (3) explanation of deception (if relevant), and (4) ques-
tions and clarification (Allen 2017). Together these serve to contextu-
alize the experience for the participant and to mitigate any potential
harms from the study.

1. Gratitude. Thank participants for their contribution! Sometimes
thanks is enough (for a short experiment), but many studies also
include monetary compensation or course credit. Compensation
should be commensurate with the amount of time and effort re-
quired for participation. Compensation structures vary widely
from place to place; typically local ethics boards will have specific
guidelines.

2. Discussion of goals. Researchers should share the purpose of the
research with participants in, aiming for a short and accessible
statement that avoids technical jargon. Sharing goals is especially
important when some aspect of the study appears evaluative –
participants will often be interested in knowing how well they
performed against their peers. For example, a parent whose child
completed a word-recognition task may request information
about their child’s performance. It can assuage parents’ worries
to highlight that the goals of the study are about measuring a
particular experimental effect, not about individual evaluation
and ranking.4

3. Explanation of deception. Researchers must reveal any deception
during debriefing, regardless of how minor the deception seems
to the researcher. This component of the debriefing process can
be thought of as “dehoaxing” because it is meant to illuminate
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5 In the case that participants report sub-
stantial concerns or negative reactions
to an experiment – during debriefing
or otherwise – researchers will typically
have an obligation to report these to
their ethics board.

any aspects of the study that were previously misleading or inac-
curate (Holmes 1976). The goal is both to reveal the true intent
of the study and to alleviate any potential anxiety associated with
the deception. Experimenters should make clear both where in
the study the deception occurred and why the deception was nec-
essary for the study’s success.

4. Questions and clarification. Finally, researchers should answer
any questions or address any concerns raised by participants.
Many researchers use this opportunity to ask participants about
their own ideas about the study goals. This practice not only
illuminates aspects of the study design that may have been unclear
to or hidden from participants, it also begins a discussion where
both researchers and participants can communicate about this
joint experience. This step is also helpful in identifying negative
emotions or feelings resulting from the study (Allen 2017).
When participants do express negative emotions, researchers are
responsible for sharing resources participants can use to help
them.5

12.1.4 Special considerations for vulnerable populations
Regardless of who is participating in research, investigators have an obli-
gation to protect the rights andwell-being of all participants. Some pop-
ulations are considered especially vulnerable because of their decreased
agency – either in general or in the face of potentially coercive situa-
tions. Research with these populations receives additional regulatory
oversight. In this section, we will consider several vulnerable popula-
tions.
Children. Children are some of the most commonly used vulner-
able populations in research because the study of development can
contribute both to children’s welfare and to our understanding of
the human mind. In the US, children under the age of 18 may only
participate in research with written consent from a parent or guardian.
Unless they are pre-verbal, children should additionally be asked for
their assent. The risks associated with a research study focusing on
children also must be no greater than minimal unless participants may
receive some direct benefit from participating or participating in the
study may improve a disorder or condition the participant was formally
diagnosed with.
People with disabilities. There are thousands of disabilities that affect
cognition, development, motor ability, communication, and decision-
making with varying degrees of interference, so it is first important to
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remember that considerations for this population will be just as diverse
as its members. No laws preclude people with disabilities from partici-
pating in research. However, those with cognitive disabilities who are
unable to make their own decisions may only participant with written
consent from a legal guardian and with their individual assent (if ap-
plicable). Those retaining full cognitive capacity but who have other
disabilities that make it challenging to participate normally in the study
should receive appropriate assistance to access information about the
study, including the risks and benefits of participation.
Incarcerated populations. Nearly 2.1 million people are incarcerated in
the United States alone (Gramlich 2021). Due to early (and repugnant)
use of prisoners as a convenience population that could not provide con-
sent, the use of prisoners in research has been a key focus of protective
efforts. The US Office for Human Research Protections (OHRP) sup-
ports their involvement in research under very limited circumstances –
typically when the research specifically focuses on issues relevant to in-
carcerated populations (Office for Human Research Protections 2003).
When researchers propose to study incarcerated individuals, the local
ethics board must reconfigure to include at least one active prisoner (or
someone who can speak from a prisoner’s perspective) and ensure that
less than half of the board has any affiliation to the prison system, pub-
lic or private. Importantly, researchers must not suggest or promise that
participation will have any bearing on an individual’s prison sentence or
parole eligibility, and compensation must be otherwise commensurate
with their contribution.
Low-income populations. Participants with fewer resources may be
more persuaded to participate by monetary incentives, creating a po-
tentially coercive situation. Researchers should consult with their local
ethics board to conform to local standards for non-coercive payment.
Indigenous populations. There is a long and negative history of the in-
volvement of indigenous populations in research without their consent.
In the case that research requires the participation of indigenous indi-
viduals – because of potential benefits to their communities, rather than
due to convenience – then community leadership must be involved to
discuss the appropriateness of the research as well as how the consent
process should be structured (Fitzpatrick et al. 2016).
Crowdworkers. Ethics boards do not usually consider crowdworkers
on platforms like Amazon Mechanical Turk to be a specific vulnerable
population, but many of the same concerns about diminished auton-
omy and greater need for protection still arise (see Depth Box below).
Without platform or ethics board standards, it is up to individual exper-
imenters to commit to fair pay, which should ideally match or exceed
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6 There are of course exceptions, includ-
ing research with more sensitive content.
Even in these cases, however, attention
to the participant’s experience can be
important for ensuring good scientific
outcomes.

7 For some reason, the Stanford Psy-
chology Department building is notori-
ously difficult to navigate. This seem-
ingly minor issue has resulted in a sub-
stantial number of late, frustrated, and
flustered participants over the years.

the applicable minimum wage (e.g., the US federal minimum wage).
Further, in the context of reputation management systems like those of
Amazon Mechanical Turk, participants can be penalized for withdraw-
ing from an experiment – once they have their work “rejected” by an
experimenter, it can be harder for them to find new jobs, causing serious
long-term harm to their ability to earn on the platform.

12.2 Designing the “research experience”
For the majority of psychology experiments, the biggest factor that gov-
erns whether a participant has a positive or negative experience of an ex-
periment is not its risk profile, since for many psychology experiments
the quantifiable risk to participants is minimal.6 Instead, it is the partic-
ipants’ experience. Did they feel welcome? Did they understand the
instructions? Did the software work as designed? Was their compensa-
tion clearly described and promptly delivered? These aspects of “user
experience” are critical both for ensuring that participants have a good
experience in the study (an ethical imperative) and for gathering good
data. An experiment that leaves participants unhappy typically doesn’t
satisfy either the ethical or the scientific goals of research. In this sec-
tion, we’ll discuss how to optimize the research experience for both
in-person and online experiments, as well as providing some guidance
on how to decide between these two administration contexts.

12.2.1 Ensuring good experiences for in-lab participants
A participant’s experience begins even before they arrive at the lab.
Negative experiences with the recruitment process (e.g., unclear con-
sent forms, poor communication, complicated scheduling) or transit to
the lab (e.g., difficulty navigating or finding parking) can lead to frus-
trated participants with a negative view of your research. Anything
you can do to make these experiences smoother and more predicable
– prompt communication, well-tested directions, reserved parking slots,
etc. – will make your participants happier and increase the quality of
your data.7

Once a participant enters the lab, every aspect of the interaction with
the experimenter can have an effect on their measured behavior (Gass
and Seiter 2018)! For example, a likable and authoritative experimenter
who clearly describes the benefits of participation is following general
principles for persuasion (Cialdini and Goldstein 2004). This interac-
tion should lead to better compliance with experimental instructions,
and hence better data, than an interaction with an unclear or indiffer-
ent experimenter.
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8 In some experiments, an experimenter
delivers a manipulation and hence it can-
not be masked from them. In such cases,
it’s common to have two experimenters
such that one delivers the manipulation
and another (masked to condition) col-
lects the measurements. This situation
often comes up with studies of infancy,
since stimuli are often delivered via an
in-person puppet show; at a minimum,
behavior should be coded by someone
other than the puppeteer.

9 For extensive further guidance on this
topic, see Litman and Robinson (2020).

Any interaction with participants must be scripted and standardized so
that all participants have as similar an experience as possible. A lack
of standardization can result in differential treatment for participants
with different characteristics, which could result in data with greater
variability or even specific sociodemographic biases. An experimenter
that was kinder and more welcoming to one demographic group would
be acting unethically, and they also might find a very different result
than they intended.
Even more importantly, experimenters who interact with participants
should ideally be unaware of the experimental condition each partic-
ipant is assigned to. This practice is often called “blinding” or “mask-
ing”. Otherwise it is easy for experimenter knowledge to result in small
differences in interaction across conditions, which in turn can influence
participants’ behavior, resulting in experimenter expectancy effects (see
Chapter 9)! Even if the experimenter must know a participant’s condi-
tion assignment – as is sometimes the case – this information should
be revealed at the last possible moment to avoid contamination of other
aspects of the experimental session.8

12.2.2 Ensuring good experiences for online participants
The design challenges for online experiments are very different than for
in-lab experiments. As the experimental procedure is delivered through
a web browser, experimenter variability and potential expectancy ef-
fects are almost completely eliminated. On the other hand, some online
participants do many hours of online tasks a day and many are multi-
tasking in other windows or on other devices. It can be much harder
to induce interest and engagement in your research when your manip-
ulation is one of dozens the participant has experienced that day and
when your interactions are mediated by a small window on a computer
screen.
When creating an online experimental experience, we consider four
issues: (1) design, (2) communication, (3) payment policies, and (4) ef-
fective consent and debriefing.9

Basic UX design. Good experiment design online is a subset of good
web user experience (UX) design more generally. If your web experi-
ment is unpleasant to interact with, participants will likely become con-
fused and frustrated. They will either drop out or provide data that are
lower quality. A good interface should be clean and well-tested and
should offer clear places where the participant must type or click to
interact. If a participant presses a key at an appropriate time, the experi-
ment should offer a response – otherwise the participantwill likely press
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it again. If the participant is uncertain how many trials are left, they
may be more likely to drop out of the experiment so it is also helpful
to provide an indication of their progress. And if they are performing
a speeded paradigm, they should receive practice trials to ensure that
they understand the experiment prior to beginning the critical blocks
of trials.
Communication. Many online studies involve almost no direct contact
with participants. When participants do communicate with you it is
very important to be responsive and polite (as it is with in-lab partic-
ipants, of course). Unlike the typical undergraduate participant, the
work that a crowdworker is doing for your study may be part of how
they earn their livelihood, and a small issue in the study for youmay feel
very important for them. For that reason, rapid resolution of issues with
studies – typically through appropriate compensation – is very impor-
tant. Crowdworkers often track the reputation of specific labs and ex-
perimenters [sometimes through forums or specialized software; Irani
and Silberman (2013)]. A quick and generous response to an issue will
ensure that future crowdworkers do not avoid your studies.
Payment policies. Unclear or punitive payment policies can have a ma-
jor impact on crowdworkers. We strongly recommend always paying
workers if they complete your experiment, regardless of result. This
policy is comparable to standard payment policies for in-lab work. We
assume good faith in our participants: if someone comes to the lab, they
are paid for the experiment, even if it turns out that they did not per-
form correctly. The major counterargument to this policy is that some
online marketplaces have a population of workers who are looking to
cheat by being non-compliant with the experiment (e.g., entering gib-
berish or even using scripts or artificial intelligence tools to progress
quickly through studies). Our recommendation is to address this issue
through the thoughtful use of “check” trials (see below) – not through
punitive non-payment. The easiest way for a participant to complete
your experiment should be by complying with your instructions.

Table 12.2: Sample online consent statement from our course.

By answering the following questions, you are participating in a study being
performed by cognitive scientists in the Stanford Department of Psychology. If you
have questions about this research, please contact us at stanfordpsych251@gmail.com.
You must be at least 18 years old to participate. Your participation in this research is
voluntary. You may decline to answer any or all of the following questions. You may
decline further participation, at any time, without adverse consequences. Your
anonymity is assured; the researchers who have requested your participation will not
receive any personal information about you.
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10 These tools still have significant
weaknesses for accessing socio-
demographically diverse populations
within and outside the US, however –
screening tools can remove participants,
but if the underlying population does
not contain many participants from a
particular demographic, it can be hard
to gather large enough samples. For
an example of using crowdsourcing
and social media sites to gather diverse
participants, see DeMayo et al. (2021).
11 Sites like LookIt (https://lookit.mit.
edu) now offer sophisticated platforms
for hosting studies for children and fam-
ilies (Scott and Schulz 2017).

Consent and debriefing. Because online studies are typically fully au-
tomated, participants do not have a chance to interact with researchers
around consent and debriefing. Further, engagement with long con-
sent forms may be minimal. In our work we have typically relied on
short consent statements such as the one from our class that is shown
in Table 12.2. Similarly, debriefing often occurs through a set of pages
that summarize all components of the debriefing process (participation
gratitude, discussion of goals, explanation of deception if relevant, and
questions and clarification). Because these interactions are so short, it
is especially important to include contact information prominently so
that participants can follow up.

12.2.3 When to collect data online?
Online data collection is increasingly ubiquitous in the behavioral
sciences. Further, the web browser – alongside survey software like
Qualtrics or packages like jsPsych (De Leeuw 2015) – can be a major
aid to transparency in sharing experimental materials. Replication
and reuse of experimental materials is vastly simpler if readers and
reviewers can click a link and share the same experience as a participant
in your experiment. By and large, well-designed studies yield data that
are as reliable as in-lab data (Buhrmester, Kwang, and Gosling 2011;
Mason and Suri 2012; Crump, McDonnell, and Gureckis 2013).
Still, online data collection is not right for every experiment. Studies
that have substantial deception or induce negative emotionsmay require
an experimenter present to alleviate ethical concerns or provide debrief-
ing. Beyond ethical issues, we discuss four broader concerns to consider
when deciding whether to conduct data collection online: (1) popula-
tion availability, (2) the availability of particular measures, (3) the feasi-
bility of particular manipulations, and (4) the length of experiments.
Population. Not every target population can be tested online. Indeed,
initially, convenience samples from Amazon Mechanical Turk were the
only group easily available for online studies. More recently, new tools
have emerged to allow pre-screening of crowd participants, including
sites like Cloud Research and Prolific (Eyal et al. 2021; Peer et al.
2021).10 And it may initially have seemed implausible that children
could be recruited online, but during the COVID-19 pandemic a
substantial amount of developmental data collection moved online,
with many studies yielding comparable results to in-lab studies (e.g.,
Chuey et al. 2021).11 Finally, new, non-US crowdsourcing platforms
continue to grow in popularity, leading to greater global diversity in
the available online populations.

https://lookit.mit.edu
https://lookit.mit.edu
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12 So-called “moderated” experiments
– inwhich the experimental session is ad-
ministered through a synchronous video
chat have been used widely in online ex-
periments for children but these designs
are less common in experiments with
adults because they are expensive and
time-consuming to administer (Chuey
et al. 2021).

Online measures. Not all measures are available online, though more
and more are. Although online data collection was initially restricted
to the use of survey measures – including ratings and text responses –
measurement options have rapidly expanded. The widespread use of
libraries like jsPsych (De Leeuw 2015) has meant that millisecond accu-
racy in capturing response times is now possible within web-browsers;
thus, most reaction time tasks are quite feasible (Crump, McDonnell,
and Gureckis 2013). The capture of sound and video is possible with
modern browser frameworks (Scott and Schulz 2017). Further, even
measures like mouse- and eye-tracking are beginning to become
available (Maldonado, Dunbar, and Chemla 2019; Slim and Hartsuiker
2023). In general, almost any variable that can be measured in the
lab without specialized apparatus can also be collected online. On
the other hand, studies that measure a broader range of physiological
variables (e.g., heart rate or skin conductance) or a larger range of
physical behaviors (e.g., walking speed or pose) are still likely difficult
to implement online.
Online manipulations. Online experiments are limited to the set of ma-
nipulations that can be created within a browser window – but this re-
striction excludes many different manipulations that involve real-time
social interactions with a human being.12 Synchronous chat sessions can
be a useful substitute (Hawkins, Frank, and Goodman 2020), but these
focus the experiment on the content of what is said and exclude the
broader set of non-verbal cues available to participants in a live interac-
tion (e.g., gaze, race, appearance, accent, etc.). Creative experimenters
can circumvent these limitations by using pictures, videos, and other
methods. But more broadly, an experimenter interested in implement-
ing a particular manipulation online should ask how compelling the on-
line implementation is compared with an in-lab implementation. If the
intention is to induce some psychological state – say stress, fear, or dis-
gust – experimenters must trade off the greater ease of recruitment and
larger scale of online studies with the more compelling experience they
may be able to offer in a controlled lab context.
The length of online studies. One last concern is about attention and
focus in online studies. Early guidance around online studies tended to
focus on making studies short and easy, with the rationale that crowd-
sourcingworkers were used to short jobs. Our sense is that this guidance
no longer holds. Increasingly, researchers are deploying long and com-
plex batteries of tasks to relatively good effect (e.g., Enkavi et al. 2019)
and conducting repeated longitudinal sampling protocols (discussed in
depth in Litman and Robinson 2020). Rather than relying on hard and
fast rules about study length, a better approach for online testing is to
ensure that participants’ experience is as smooth and compelling as pos-
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13 It is of course import to keep in
mind that if a person works part- or full-
time on a crowdsourcing platform, they
are not a representative sample of the
broader national population. Unfortu-
nately, similar caveats hold true for in-
person convenience samples (see Chap-
ter 10). Ultimately, researchers must rea-
son about what their generalization goal
is and whether that goal is consistent
with the samples they can access (online
or otherwise).

sible. Under these conditions, if an experiment is viable in the lab, it is
likely viable online.
Online testing tools continue to grow and change but they are already
mature enough that using them should be part of most behavioral re-
searchers’ basic toolkit.13

12.3 Ensuring high quality data
In the final section of this chapter, we review some key data collection
practices that can help researchers collect high quality data while re-
specting our ethical obligations to participants. By “high quality,” here
we especially mean datasets that are uncontaminated by responses gen-
erated by misunderstanding of instructions, fatigue, incomprehension,
or intentional neglect of the experimental task.
We’ll begin by discussing the issue of pilot testing; we recommend a
systematic procedure for piloting that can maximize the chance of col-
lecting high quality data. Next, we’ll discuss the practice of checking
participants’ comprehension and attention andwhat such checks should
and shouldn’t be used for. Finally, we’ll discuss the importance of main-
taining consistent data collection records.

12.3.1 Conduct effective pilot studies
A pilot study is a small study conducted before you collect your main
sample. The goal is to ensure smooth and successful data collection by
first checking if your experimental procedures and data collectionwork-
flow are working correctly. Pilot studies are also an opportunity to get
feedback from participants about their experience of the experimental
task, for example, is it too easy, too difficult, or too boring.
Because pilot studies usually involve a small number of participants, they
are not a reliable indicator of the study results, such as the expected ef-
fect size or statistical significance (as we discussed in Chapter 10). Don’t
use pilots to check if your effect is present or to estimate an effect size
for power analysis. What pilots can do is tell you about whether your
experimental procedure is viable. For example, pilots studies can re-
veal:

– if your code crashes under certain circumstances
– if your instructions confuse a substantial portion of participants
– if you have a very high dropout rate
– if your data collection procedure fails to log variables of interest
– if participants are disgruntled by the end of the experiment
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14 We mean especially when deploying
a new experimental paradigm or when
collecting data from a new population.
Once you have run many studies with
a similar procedure and similar sample,
extensive piloting is less important. Any
time you change something, it’s always
good to run one or two pilots, though,
just to check that you didn’t inadver-
tently mess up your experiment.
15 In a pinch you can even run your-
self through the experiment a bunch of
times (though this isn’t preferable be-
cause you’re likely to miss a lot of aspects
of the experience that you are habitu-
ated to, especially if you’ve been debug-
ging the experiment already).

16 In the case of especially expensive ex-
periments, it can be a dilemma whether
to run a larger pilot to identify difficul-
ties since such a pilot will be costly. In
these cases, one possibility is to plan to
include the pilot participants in the main
dataset if no major procedural changes
are required. In this case, it is helpful
to preregister a contingent testing strat-
egy to avoid introducing data-dependent
bias (see Chapter 11). For example, in a
planned sample of 100 participants, you
could preregister running 20 as a pilot
sample with the stipulation that you will
look only at their dropout rate – and
not at any condition differences. Then
the preregistration can state that, if the
dropout rate is lower than 25%, you will
collect the next 80 participants and ana-
lyze the whole dataset, including the ini-
tial pilot, but if dropout rate is higher
than 25%, you will discard the pilot sam-
ple and make changes. This kind of
strategy can help you split the difference
between cautious piloting and conserva-
tion of rare or costly data.

We recommend that all experimenters perform – at the very minimum
– two pilot studies before they launch a new experiment.14

The first pilot, whichwe call your non-naïve participant pilot, canmake
use of participants who know the goals of the experiment and under-
stand the experimental manipulation – this could be a friend, collab-
orator, colleague, or family member.15 The goal of this pilot study is
to ensure that your experiment is comprehensible, that participants can
complete it, and that the data are logged appropriately. You must ana-
lyze the data from the non-naive pilot, at least to the point of checking
that the relevant data about each trial is logged.
The second pilot, your naïve participant pilot, should consist of a test of
a small set of participants recruited via the channel you plan to use for
your main study. The number of participants you should pilot depends
on the cost of the experiment in time, money, and opportunity as well
as its novelty. A brand new paradigm is likely more prone to error than a
tried and tested paradigm. For a short online survey-style experiment, a
pilot of 10–20 people is reasonable. Amore time-consuming laboratory
study might require piloting just two or three people.16

The goal of the naïve pilot study is to understand properties of the par-
ticipant experience. Were participants confused? Did they withdraw
before the study finished? Even a small number of pilots can tell you
that your dropout rate is likely too high: for example, if 5 of 10 pilot
participants withdraw you likely need to reconsider aspects of your de-
sign. It’s critical for your naïve participant pilot that you debrief more
extensively with your participants. This debriefing often takes the form
of an interview questionnaire after the study is over. “What did you
think the study was about?” and “is there any way we could improve
the experience of being in the study?” can be helpful questions. Often
this debriefing is more effective if it is interactive, so even if you are
running an online study you may want to find some way to chat with
your participants.
Piloting – especially piloting with naïve participants to optimize the
participant experience – is typically an iterative process. We frequently
launch an experiment for a naive pilot, then recognize from the data
or from participant feedback that the experience can be improved. We
make tweaks and pilot again. Be careful not to over-fit to small dif-
ferences in pilot data, however. Piloting should be more like work-
shopping a manuscript to remove typos than doing statistical analysis.
If someone has trouble understanding a particular sentence – whether
in yourmanuscript or in your experiment instructions – you should edit
to make it clearer!
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17 Measurements of per-page or per-
element completion times can be even
more specific since they can, for exam-
ple, identify participants that simply did
not read an assigned passage.
18 One variation that we endorse in
certain cases is to force participants to
engage with particular pages for a cer-
tain amount of time through the use of
timers. Though, beware, this kind of fea-
ture can lead to an adversarial relation-
ship with participants – in the face of
this kind of coercion, many will opt to
pull out their phone and multi-task un-
til the timer runs down.

 ACCIDENT REPORT

Data logging much?
When Mike was in graduate school, his lab got a contract to test a very large group of participants in a battery of
experiments, bringing them into the lab over the course of a series of intense bursts of participant testing. He got
the opportunity to add an experiment to the battery, allowing him to test a much larger sample than resources
would otherwise allow. He quickly coded up a new experiment as part of a series of ongoing studies and began
deploying it, coming to the lab every weekend for several months to help move participants through the testing
protocol. Eagerly opening up the data file to reap the reward of this hard work, he found that the condition variable
was missing from the data files. Although the experimental manipulation had been deployed properly, there was
no record of which condition each participant had been run in, and so the data were essentially worthless. Had he
run a quick pilot (even with non-naive participants) and attempted to analyze the data, this error would have been
detected, and many hours of participant and experimenter effort would not have been lost.

12.3.1 Measure participant compliance
You’ve constructed your experiment and piloted it. You are almost
ready to go – but there is one more family of tricks for helping to
achieve high quality data: integrating measures of participant compli-
ance into your paradigm. Collecting data on compliance (whether par-
ticipants followed the experimental procedures as expected) can help
you quantify whether participants understood your task, engaged with
your manipulation, and paid attention to the full experimental expe-
rience. These measures in turn can be used both to modify your ex-
perimental paradigm and to exclude specific participants that were es-
pecially non-compliant (Hauser, Ellsworth, and Gonzalez 2018; Ejelöv
and Luke 2020).
Belowwe discuss four types of compliance checks: (1) passive measures,
(2) comprehension checks, (3) manipulation checks, and (4) attention
checks. Passivemeasures and comprehension checks are very helpful for
enhancing data quality. Manipulation checks also often have a role to
play. In contrast, we typically caution in the use of attention checks.

1. Passive measures of compliance. Even if you do not ask partici-
pants anything extra in an experiment, it is often possible to tell
if they have engaged with the experimental procedure simply by
how long it takes them to complete the experiment. If you see
participants with completion times substantially above or below
the median, there is a good chance that they are either multi-
tasking or rushing through the experiment without engaging.17
Passive measures cost little to implement and should be inserted
whenever possible in experiments.18
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19 If you are querying comprehension
of experimental materials rather than
instructions, you may not want to re-
expose participants to the same passage
again in order to avoid confounding a
participants’ initial comprehension and
the amount of exposure that they re-
ceive.

20 Hauser, Ellsworth, and Gonzalez
(2018) worry that manipulation checks
can themselves change the effect of a ma-
nipulation – this worry strikes us as sen-
sible, especially for some types of manip-
ulations like emotion inductions. Their
recommendation is to test the efficacy
of the manipulation in a separate study,
rather than trying to nest the manipula-
tion check within the main study.

2. Comprehension checks. For tasks with complex instructions or
experimental materials (say a passage that must be understood for
a judgment to be made about it), it can be very helpful to get
a signal that participants have understood what they have read
or viewed. Comprehension checks, which ask about the content
of the experimental instructions or materials, are often included
for this purpose. For the comprehension of instructions, the best
kinds of questions simply query the knowledge necessary to suc-
ceed in the experiment, for example, “what are you supposed to
do when you see a red circle flash on the screen?” In many plat-
forms, it is possible to make participants reread the instructions
again until they can answer these correctly. This kind of repeti-
tion is nice because it corrects participants’ misconceptions rather
than allowing them to continue in the experiment when they do
not understand.19

3. Manipulation checks. If your experiment involves more than
a very transient manipulation – for example, if you plan to in-
duce some state in participants or have them learn some content
– then you can include a measure in your experiment that con-
firms that your manipulation succeeded (Ejelöv and Luke 2020).
This measure is known as a manipulation check because it mea-
sures some prerequisite difference between conditions that is not
the key causal effect of interest but is causally prerequisite to this
effect. For example, if you want to see if anger affects moral judg-
ment, then it makes sense tomeasure whether participants in your
anger induction condition rate themselves as angrier than partic-
ipants in your control condition. Manipulation checks are useful
in the interpretation of experimental findings because they can
decouple the failure of a manipulation from the failure of a ma-
nipulation to affect your specific measure of interest.20

4. Attention checks. A final type of compliance check is a check
that participants are paying attention to the experiment at all.
One simple technique is to add questions that have a known
and fairly obvious right answer (e.g., “what’s the capital of
the United States.”). These trials can catch participants that
are simply ignoring all text and “mashing buttons”, but they
will not find participants who are mildly inattentive. Some-
times experimenters also use trickier compliance checks, such
as putting an instruction for participants to click a particular
answer deep within a question text that otherwise would have
a different answer (Oppenheimer, Meyvis, and Davidenko
2009) (Figure 12.2). Such compliance checks decrease so-called
“satisficing” behavior, in which participants read as quickly as
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they can get away with (doing only the minimum. On the
other hand, participants may see such trials as indications that
the experimenter is trying to trick them, and adopt a more
adversarial stance towards the experiment, which may result in
less compliance with other aspects of the design (unless they are
at the end of the experiment, Hauser, Ellsworth, and Gonzalez
2018). If you choose to include attention checks like these, be
aware that you are likely reducing variability in your sample –
trading off representativeness for compliance.

Figure 12.2: An attention check trial
based on Oppenheimer, Meyvis, and
Davidenko (2009). These trials can de-
crease variability in participant attention,
but at the cost of selecting a subsample of
participants, so they should be used cau-
tiously.

Data from all of these types of checks are used in many different – often
inconsistent – ways in the literature. We recommend that you:

1. Use passive measures and comprehension checks as pre-registered
exclusion criteria to eliminate a (hopefully small) group of partic-
ipants who might be non-compliant with your experiment.

2. Check that exclusions are low and that they are uniform across
conditions. If exclusion rates are high, your design may have
deeper issues. If exclusions are asymmetric across conditions, you
may be compromising your randomization by creating a situation
in which (on average) different kinds of participants are included
in one condition compared with the other. Both of these situa-
tions substantially compromise any estimate of the causal effect of
interest.
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21 Including this information means you
are “conditioning on a post-treatment
variable,” as we described in Chapter 7.
Inmedicine, analysts distinguish “intent-
to-treat” analysis, where you analyze
data from everyone you gave a drug, and
“as treated” analysis, where you analyze
data depending on how much of the
drug people actually took. In general,
intent-to-treat gives you the generaliz-
able causal estimate. In our current sit-
uation, if you include compliance as a
covariate, you are essential doing an “as
treated” analysis and your estimate can
be biased as a result. Although there is
occasional need for such analyses, in gen-
eral you probably want to avoid them.

 ACCIDENT REPORT

Does data quality vary throughout the semester?
Every lab that collects empirical data repeatedly using the same population builds up lore about how that population
varies in different contexts. Many researcherswho conducted experimentswith college undergraduateswere taught
never to run their studies at the end of the semester. Exhausted and stressed students would likely yield low-quality
data, or so the argument went. Until the rise of multi-lab collaborative projects like ManyLabs (see Chapter 3),
such beliefs were almost impossible to test.
ManyLabs 3 aimed specifically to evaluate data quality variation across the academic calendar (Ebersole et al. 2016).
With 2,696 participants at 20 sites, the study conducted replications of 13 previously published findings. Although
only six of these findings showed strong evidence of replicating across sites, none of the six effects was substantially
moderated by being collected later in the semester. The biggest effect they observed was a change in the Stroop
effect from 𝑑 = .89 during the beginning and middle of the semester to 𝑑 = .92 at the end. There was some
evidence that participants reported being less attentive at the end of the semester, but this trend wasn’t accompanied
by a moderation of experimental effects.
Researchers are subject to the same cognitive illusions and biases as any human. One of these biases is the search
to find meaning in the random fluctuations they sometimes observe in their experiments. The intuitions formed
through this process can be helpful prompts for generating hypotheses – but beware of adopting them into your
“standard operating procedures” without further examination. Labs that avoided data collection during the end of
the semester might have sacrificed 10–20% of their data collection capacity for no reason!

3. Deploy manipulation checks if you are concerned about whether
your manipulation effectively induces a difference between
groups. Analyze the manipulation check separately from the
dependent variable to test whether the manipulation was causally
effective (Ejelöv and Luke 2020).

4. Make sure that your attention checks are not confounded in any
way with condition – remember our cautionary tale from Chap-
ter 9, in which an attention check that was different across condi-
tions actually created an experimental effect.

5. Do not include any of these checks in your analytic models as a
covariate, as including this information in your analysis compro-
mises the causal inference from randomization and introduces bias
in your analysis (Montgomery, Nyhan, and Torres 2018).21

Used appropriately, compliance checks can provide both a useful set
of exclusion criteria and a powerful tool for diagnosing potential issues
with your experiment during data analysis and correcting them down
the road.
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22 We’ll have a lot to say about this issue
in Chapter 13.

12.3.1 Keep consistent data collection records
As an experimentalist, one of the worst feelings is to come back to
your data directory and see a group of data files, run1.csv, run2.csv,
run3.csv and not know what experimental protocol was run for each.
Was run1 the pilot? Maybe a little bit of personal archaeology with
timestamps and version history can tell you the answer, but there is no
guarantee.22

Figure 12.3: Part of a run sheet for a de-
velopmental study.

As well as collecting the actual data in whatever form they take (e.g.,
paper surveys, videos, or files on a computer), it is important to log
metadata – data about your data – including relevant information like
the date of data collection, the sample that was collected, the experi-
ment version, the research assistants who were present, etc. The rele-
vant meta-data will vary substantially from study to study – the impor-
tant part is that you keep detailed records. Figure 12.3 and Figure 12.4
give two examples from our own research. The key feature is that they
provide some persistent metadata about how the experiments were con-
ducted.

12.4 Chapter summary: Data collection
In this chapter, we took the perspective of both the participant and the
researcher. Our goal was to discuss how to achieve a good research
outcome for both. On the side of the participant, we highlighted the
responsibility of the experimenter to ensure a robust consent and de-
briefing process. We also discussed the importance of a good experi-
mental experience in the lab and online – ensuring that the experiment
is not only conducted ethically but is also pleasant to participate in. Fi-
nally, we discussed how to address some concerns about data quality
from the researcher perspective, recommending both the extensive use
of non-naive and naive pilot participants and the use of comprehension
and manipulation checks.
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Added a simple familiarization slide substitute that presents Bob and
shows that the experiment is about a person talking to you. Before
that, the familiarization slide was simply skipped.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
----------------------------
November 18 2013
50 subjects | Betting | No familiarization | Friend
var participant_response_type = 1;
var participant_feature_count = 1;
var linguistic_framing = 0;
var question_type = 0;
----------------------------
November 18 2013
50 subjects | Likert | No familiarization | Friend
var participant_response_type = 2;
var participant_feature_count = 1;
var linguistic_framing = 0;
var question_type = 2;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
The experiment now asked the subjects the referent of Bobs statement
at the bottom of the page. The previous experiments always had the
input field just below the stimuli or, in the case of 3fc hoovering
over the images did highlighted possible ones.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
----------------------------
November 30 2013 ~ 7 pm:
50 subjects | 3 forced choice condition | No familiarization | Friend
var participant_response_type = 0;
var participant_feature_count = 1;
var linguistic_framing = 0;
var question_type = 0;

Figure 12.4: Excerpt of a log for an iterative run of online experiments.
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DISCUSSION QUESTIONS

1. “Citizen science” is a movement to have a broader base of individuals participate in research because they are
interested in discoveries and want to help. In practice, citizen science projects in psychology like Project Im-
plicit (https://implicit.harvard.edu/implicit/), Children Helping Science (https://lookit.mit.edu), and TheMu-
sicLab.org (https://themusiclab.org) have all succeeded by offering participants a compelling experience. Check
one of these out, participate in a study, and make a list the features that make it fun and easy to contribute data.

2. Be a Turker! Sign up for an account as an Amazon Mechanical Turk or Prolific Academic worker and complete
a couple of tasks. How did you feel about browsing the list of tasks looking for work? What features of tasks
attracted your interest? How hard was it to figure out how to participate in each task? And how long did it take
to get paid?

READINGS

– An introduction to online research: Buhrmester, M. D., Talaifar, S., & Gosling, S. D. (2018). An evaluation of
Amazon’s Mechanical Turk, its rapid rise, and its effective use. Perspectives on Psychological Science, 13(2),
149-154. https://doi.org/10.1177/1745691617706516.
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1 We use the term “materials” here
to cover a range of things another re-
searcher might need in order to repeat
your study, for example, stimuli, sur-
vey instruments, and code for computer-
based experiments.

Figure 13.1: Poor file management cre-
ates chaos! “Documents” by xkcd (https:
//xkcd.com/1459, licensed under https:
//xkcd.com/license.html).
2 The world’s oldest scientific journal is
the Philosophical Transactions of the Royal
Society, first published in 1665.

13 PROJECT MANAGEMENT

🍏 LEARNING GOALS

– Manage your research projects efficiently and transparently
– Develop strategies for data organization
– Optimize sharing of research products, like data and analysis code, by ensuring they are Findable, Accessible,

Interoperable, Reusable (FAIR)
– Discuss potential ethical constraints on sharing research products

Your closest collaborator is you six months ago, but you
don’t reply to emails.
— Karl Broman (2016)

Have you ever returned to an old project folder to find a chaotic mess
of files with names like analysis-FINAL, analysis-FINAL-COPY, and
analysis-FINAL-COPY-v2? Which file is actually the final version!?
Or perhaps you’ve spent hours searching for a data file to send to your
advisor, only to realize with horror that it was only stored on your old
laptop – the one that experienced a catastrophic hard drive failurewhen
you spilled coffee all over it one sleepy Sunday morning. These experi-
ences may make you sympathetic to Karl Broman’s quip above. Good
project management practices not only make it easier to share your re-
search with others, they also make for a more efficient and less error
prone workflow that will avoid giving your future self a headache. This
chapter is about the process of managing all of the products of your
research workflow – methodological protocols, materials1, data, and
analysis scripts. We focus especially on managing projects in ways that
maximize their value to you and to the broader research community by
aligning with open science practices (maximizing TRANSPARENCY).
When we talk about research products, we typically think of articles
in academic journals, which have been scientists’ main method of com-
munication since the scientific revolution in the 1600s.2 But articles
only provide written summaries of research; they are not the original
research products. In recent years, there have been widespread calls
for increased sharing of research products, such as materials, data, and
analysis code (Munafò et al. 2017). When shared appropriately, these

https://xkcd.com/1459
https://xkcd.com/1459
https://xkcd.com/license.html
https://xkcd.com/license.html
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Figure 13.2: Illustration of the analytic
chain from raw data through to research
report.

other products can be as valuable as a summary article: Shared stimulus
materials can be reused for new studies in creative ways; shared anal-
ysis scripts can allow for reproduction of reported results and become
templates for new analyses; and shared data can enable new analyses or
meta-analyses. Indeed, many funding agencies, and some journals, now
require that research products be shared publicly, except when there
are justified ethical or legal constraints, such as with sensitive medical
data (Nosek et al. 2015).
Data sharing, in particular, has been the focus of intense interest.
Sharing data is associated with benefits in terms of error detection
(Hardwicke et al. 2021), creative re-use that generates new discoveries
(Voytek 2016), increased citations (Piwowar and Vision 2013), and
detection of fraud (Simonsohn 2013). According to surveys, researchers
are usually willing to share data in principle (Houtkoop et al. 2018),
but unfortunately, in practice, they often do not, even if you directly
ask them (Hardwicke and Ioannidis 2018)! Often authors simply
do not respond, but when they do, they frequently report that data
have been lost because they were stored on a misplaced or damaged
computer or drive, or team members with access to the data are no
longer contactable (Tenopir et al. 2020).
As we have discussed in Chapter 3, even when data are shared, they are
not always formatted in a way that they can be easily understood and
re-used by other researchers, or even the original authors! This issue
highlights the critical role of metadata: information that documents
the data (and other products) that you share, including README files,
codebooks that document datasets themselves, licenses that provide legal
restrictions on reuse, etc. We will discuss best-practices for metadata
throughout the chapter.
Sound project management practices and sharing of research projects
are mutually reinforcing goals that bring benefits for both yourself, the
broader research community, and scientific progress. One particularly
important benefit of good project management practices is that they
enable reproducibility. As we discussed in Chapter 3, computational
reproducibility involves being able to trace the provenance of any re-
ported analytic result in a research report back to its original source.
Thatmeans being able to recreate the entire analytic chain fromdata col-
lection to data files, though analytic specifications to the research results
reported in text, tables, and figures. If data collection is documented
appropriately, and if data are stored, organized, and shared, then the
provenance of a particular result is relatively easy to verify. But once
this chain is broken it can be hard to reconstruct , Figure 13.2. That’s
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3 This chapter – especially the last
section – draws heavily on Klein et
al. (2018), an article on research trans-
parency that several of us contributed to.

4 We’re going to talk in this chap-
ter about managing research products,
which is one important part of project
management. We won’t talk about
some other aspects of managing projects
such as calendaring, managing tasks, or
project communications. These are all
important, they are just a bit out of scope
for a book on doing experiments!

why it’s critical to build good project management practices into your
research workflow right from the start.
In this chapter, youwill learn how tomanage your research project both
efficiently and transparently.3 Working towards these goals can create a
virtuous cycle: if you organize your research products well, they are eas-
ier to share later, and if you assume that you will be sharing, you will be
motivated to organize your work better! We begin by discussing some
important principles of project management, including folder structure,
file naming, organization, and version control. Then we zoom in specif-
ically on data and discuss best practices for data sharing. We end by
discussing the question of what research products to share and some
of the potential ethical issues that might limit your ability to share in
certain circumstances.

CASE STUDY

ManyBabies, ManySpreadsheetFormats!
TheManyBabies project is an example of “Big Team Science” in psychology. A group of developmental psychology
researchers (including some of us) were worried about many of the issues of reproducibility, replicability, and
experimental methods that we’ve been discussing throughout this book, so they set up a large-scale collaboration
to replicate key effects in developmental science. The first of these studies was ManyBabies 1 (The ManyBabies
Consortium et al. 2020), a study of infants’ preference for baby-talk (also known as “infant directed speech”).
The core team expected a handful of labs to contribute, but after a year-long data collection period, they ended
up receiving data from 69 labs around the world! The outpouring of interest signaled a lot of enthusiasm from the
community for this kind of collaborative science. Unfortunately, it also made for a tremendous data management
headache. All kinds of complications and hilarity ensued as the idiosyncratic data formatting preferences of the
various labs were reorganised to fit into a single standardized analysis pipeline (Byers-Heinlein et al. 2020).
All of the specific formatting changes that individual labs made were reasonable – altering column names for clarity,
combining templates into a single Excel file, changing units (e.g., from seconds to milliseconds) – but together they
created a very challenging data validation problem for the core analysis team, requiring many dozens of hours of
coding and hand-checking. The data checking was critical: an error in one lab’s data was flagged during validation
and led to the painful decision to drop those data from the final dataset. In future ManyBabies projects, the group
has committed to using shared data validation software (https://manybabies.org/validator/) to ensure that data files
uploaded by individual labs conform to a shared standard.

13.1 Principles of project management
A lot of project management problems can be avoided by following a
very simple file organisation system.4 For those researchers that “grew
up” managing their files locally on their own computers and email-
ing colleagues versions of data files and manuscripts with names like
manuscript-FINAL-JS-rev1.xlsx, a few aspects of this system may

https://manybabies.org/validator/
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5 The biggest issue that comes up in us-
ing a split workflow like this is the need
to ensure reproducible written products,
a process we cover in Chapter 14.

seem disconcerting. However, with a little practice, this new way of
working will start to feel intuitive and have substantial benefits.
Here are the principles:

1. There should be exactly one definitive copy of each document
in the project, with its name denoting what it is. For example,
fifo_manuscript.Rmd or fifo_manuscript.docx is the write-
up of the “fifo” project as a journal manuscript.

2. The location of each document should be within a folder which
serves to uniquely identify the document’s function within the
project. For example, /analysis/experiment1/eye_tracking_preprocessing.Rmd
is clearly the file that performs pre-processing for the analysis of
eye-tracking data from Experiment 1.

3. The full project should be accessible to all collaborators
via the cloud, either using a version control platform (e.g.,
<github.com>) or another cloud storage provider (e.g., Drop-
box, Google Drive).

4. The revision history of all text- and text-based documents
(minimally, data, analysis code, and manuscript files) should be
archived automatically. Automatic versioning is the key feature
of all version control systems and is often included by cloud
storage providers.

Keeping these principles in mind, we discuss best practices for project
organization, version control, and file naming.

13.1.1 Organizing your project
To the greatest extent possible, all files related to a project should be
stored in the same project folder (with appropriate sub-folders), and on
the same storage provider. There are cases where this is impractical
due to the limitations of different software packages. For example, in
many cases a team will manage its data and analysis code via github but
decide to write collaboratively using google docs, overleaf, or another
collaborative platform. (It can also be hard to ask all collaborators to use
a version control system they are unfamiliar with.) In that case, the final
paper should still be linked in some way to the project repository.5

Figure 13.3 shows an example project stored on the Open Science
Framework. The top level folder contains sub-folders for analyses,
materials, raw and processed data (kept separately). It also contains the
paper manuscript, and, critically, a README file in a text format that
describes the project. A README is a great way to document any
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6 We like the scheme followed by
Project TIER (https://www.projecttier.
org), which provides very clear guid-
ance about file structure and naming con-
ventions. TIER is primarily designed
for a copy-and-paste workflow, which
is slightly different from the “dynamic
documents” workflow that we primarily
advocate for (e.g., using R Markdown or
Quarto as in Appendix C).

7 Overleaf is actually supported by git on
the backend!

Figure 13.4: Visualisation of Git ver-
sion control showing a series of com-
mits (circles) on three different branches:
the main branch (green) and two oth-
ers (blue and red). Branches can be cre-
ated and then merged back into the main
branch.

other metadata that the authors would like to be associated with the
research products, for example a license, explained below.

Figure 13.3: Sample top level folder
structure for a project. From Klein et al.
(2018). Original visible on theOpen Sci-
ence Framework (https://osf.io/xf6ug).

There are many reasonable ways to organize the sub-folders of a re-
search project, but the broad categories of materials, data, analysis, and
writing are typically present.6 In some projects – such as those involving
multiple experiments or complex data types – you may have to adopt a
more complex structure. In many of our projects, it’s not uncommon to
find paths like /data/raw_data/exp1/demographics. The key prin-
ciple is to create a hierarchical structure in which subfolders uniquely
identify the part of the broader space of research products that are found
inside them – that is, /data/raw_data/exp1 contains all the raw data
from Experiment 1, and /data/raw_data/exp1/demographics con-
tains all the raw demographics data from that particular experiment.

13.1.2 Versioning
Probably everyone who has ever collaborated electronically has experi-
enced the frustration of editing a document, only to find out that you
are editing the wrong version – perhaps some of the problems you are
working on have already been corrected, or perhaps the section you are
adding has already been written by someone else. A second common
source of frustration comes when you take a wrong turn in a project,
perhaps by reorganizing a manuscript in a way that doesn’t work or
refactoring code in a way that turns out to be short-sighted.
These two problems are solved bymodern version control systems. Here
we focus on the use of git, which is themost widely used version control
system. Git is a great general solution for version control, but many peo-
ple – including several of us – don’t love it for collaborative manuscript
writing. We’ll introduce git and its principles here, while noting that
online collaboration tools like Google Docs and Overleaf7 can be easier
for writing prose (as opposed to code); we cover this topic in a bit more
depth in Chapter 14.

https://www.projecttier.org
https://www.projecttier.org
https://osf.io/xf6ug
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8 https://github.com

9 In 48BC, Julius Caesar accidentally
burned down part of the Great Library
of Alexandria where the sole copies
of many valuable ancient works were
stored. To this day, many scientists have
apparently retained the habit of storing
single copies of important information
in vulnerable locations. Even in the age
of cloud computing, hard drive failure
is a surprisingly common source of prob-
lems!

10 Version control isn’t magic, and if you
and a collaborator edit the same para-
graph or function, you will likely have
to merge your changes by hand. But Git
will at least show you where the conflict
is!

Git is a tool for creating and managing projects, which are called repos-
itories. A Git repository is a directory whose revision history is tracked
via a series of commits – snapshots of the state of the project. These
commits can form a tree with different branches, as when two contrib-
utors to the project are working on two different parts simultaneously
(Figure 13.4). These branches can later bemerged either automatically
or via manual intervention in the case of conflicting changes.
Commonly, Git repositories are hosted by an online service likeGithub8

to facilitate collaboration. With this workflow. a user makes changes
to a local version of the repository on their own computer and pushes
those changes to the online repository. Another user can then pull those
changes from the online repository to their own local version. The on-
line “origin” copy is always the definitive copy of the project and a
record is kept of all changes. Appendix B provides a practical introduc-
tion toGit andGithub, and there are a variety of good tutorials available
online and in print (Blischak, Davenport, and Wilson 2016).
Collaboration using version control tools is designed to solve many of
the problems we’ve been discussing:

– A remotely hosted Git repository is a cloud-based backup of your
work, meaning it is less vulnerable to accidental erasure.9

– By virtue of having versioning history, you have access to previous
drafts in case you find you have been following a blind alley and
want to roll back your changes.

– By creating new branches, you can create another, parallel history
for your project, so that you can try outmajor changes or additions
without disturbing the main branch in the process.

– A project’s commit history is labeled with each commit’s author
and date, facilitating record keeping and collaboration.

– Automatic merging can allow synchronous editing of different
parts of a manuscript or codebase.10

Organizing a project repository for collaboration and hosting on a re-
mote platform is an important first step towards sharing! Many of our
projects (like this book) are actually born open: we do all of our work
on a publicly hosted repository for everyone to see (Rouder 2015). This
philosophy of “working in the open” encourages good organization
practices from the beginning. It can feel uncomfortable at first, but this
discomfort soon vanishes as you realize that basically no one is looking
at your in-progress project.
One concern that many people raise about sharing in-progress research
openly is the possibility of “scooping” – that is, other researchers get-
ting an idea or even data from the repository and writing a paper before

https://github.com
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11 https://www.karlton.org/2017/12/
naming-things-hard/
12 We won’t talk about cache invali-
dation; that’s a more technical problem
in computer science that is beyond the
scope of this book.

13 The platform won’t take care of it if
you email it to a collaborator – precisely
why you should share access to the full
platform, not just the out-of-context file!

you do. We have two responses to this concern. First, the empirical fre-
quency of this sort of scooping is difficult to determine, but likely very
low – we don’t know of any documented cases. Mostly, the problem is
getting people to care about your experiment at all, not people caring
so much that they would publish using your data or materials! In Gary
King’s words (King and Shieber 2013), “The thing that matters the least
is being scooped. The thing that matters the most is being ignored.”
On the other hand, if you are in an area of research that you perceive
to be competitive, or where there is some significant risk of this kind
of shenanigans, it’s very easy to keep part, or all, of a repository, private
among your collaborators until you are ready to share more widely. All
of the benefits we described still accrue. For an appropriately organized
and hosted project, often the only steps required to share materials, data,
and code are 1) to make the hosted repository public and 2) to link it to
an archival storage platform like the Open Science Framework.

13.1.3 File names
As Phil Karlton reportedly said11, “There are only two hard things in
Computer Science: cache invalidation and naming things.” What’s
true for computer science is true for research in general.12 Naming
files is hard! Some very organized people survive on systems like
INFO-r1-draft-2020-07-13-js.docx - meaning, “the INFO
project revision 1 draft of July 13th, 2020, with edits by JS.” But
this kind of system needs a lot of rules and discipline, and it requires
everyone in a project to buy in completely.
On the other hand, if you are naming a file in a hierarchically organized
version control repository, the naming problem gets dramatically eas-
ier. All of a sudden, you have a context in which names make sense.
data.csv is a terrible name for a data file on its own. But the name
is actually perfectly informative – in the context of a project repository
with a README that states that there is only a single experiment, a
repository structure such that the file lives in a folder called raw_data,
and a commit history that indicates the file’s commit date and author.
As this example shows, naming is hard out of context. So here’s our rule:
name a file with what it contains. Don’t use the name to convey the
context of who edited it, when, or where it should go in a project. That
is metadata that the platform should take care of.13

https://www.karlton.org/2017/12/naming-things-hard/
https://www.karlton.org/2017/12/naming-things-hard/
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14 Future you will thank present you for
explaining why there are two copies of
subject 19’s data after you went back and
corrected a typo.

13.2 Data Management
We’ve just discussed how to manage projects in general; in this section
we zoom in on datasets specifically. Data are often the most valuable
research product because they represent the evidence generated by our
research. We maximize the value of the evidence when other scientists
can reuse it for independent verification or generation of novel discov-
eries. Yet lots of research data are not reusable, even when they are
shared. In Chapter 3, we discussed Hardwicke et al. (2018)’s study of
analytic reproducibility. But before we were even able to try and re-
produce the analytic results, we had to look at the data. When we did
that, we found that only 64% of shared datasets were both complete and
understandable.
How can you make sure that your data are managed so as to enable
effective sharing? We make four primary recommendations:

1. save your raw data
2. document your data collection process
3. organize your raw data for later analysis
4. document your data using a codebook or other metadata

Let’s look at each in turn.

13.2.1 Save your raw data
Raw data take many forms. For many of us, the raw data are those re-
turned by the experimental software; for others, the raw data are videos
of the experiment being carried out. Regardless of the form of these
data, save them! They are often the only way to check issues in what-
ever processing pipeline brings these data from their initial state to the
form you analyze. They also can be invaluable for addressing critiques
or questions about your methods or results later in the process. If you
need to correct something about your raw data, do not alter the original
files. Make a copy, and make a note about how the copy differs from
the original.14

Raw data are often not anonymized – or even anonymizable.
Anonymizing them sometimes means altering them (e.g., in the
case of downloaded logs from a service that might include IDs or IP
addresses). Or in some cases, anonymization is difficult or impossible
without significant effort and loss of some value from the data, e.g. for
video data or MRI data (Bischoff-Grethe et al. 2007). Unless you have
specific permission for broad distribution of these identifiable data,
the raw data may then need to be stored in a different way. In these
cases, we recommend saving your raw data in a separate repository
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15 The precise repository you use for
this task is likely to vary by the kind of
data that you’re trying to store and the
local regulatory environment. For ex-
ample, in the United States, to store de-
anonymized data with certain fields re-
quires a server that is certified forHIPAA
(the relevant privacy law). Many – but
by no means all – universities provide
HIPAA-compliant cloud storage.

16 One way we organize the raw data in
some of our paper is to have three dif-
ferent subfolders in the data/ directory:
raw/, for the original data; processed/,
for the anonymized or otherwise pre-
processed data; and /scripts, for the
code that does the preprocessing. Since
these folders are in a git repository, we
can then add raw/* to the .gitignore
file, ensuring that they are never added
to the public version of the repository
even though they sit within our local file
hierarchy in the appropriate place.
17 A word about subject identifiers.
These should be anonymous identifiers,
like randomly generated numbers, that
cannot be linked to participant identi-
ties (like data of birth) and are unique.
You laugh, but one of us was in a lab
where all the subject IDs were the date
of test and the initials of the partici-
pant. These were neither unique nor
anonymous. One common convention
is to give your study a code-name and
to number participants sequentially, so
your first participant in a sequence of
experiments on information processing
might be INFO-1-01.
18 If it’s in a proprietary format like a
Qualtrics .QSF file, a good practice is to
convert it to a simple plain text format as
well so it can be opened and re-used by
folks who do not have access toQualtrics
(which may include future you!).
19 https://nyu.databrary.org/volume/
896

with the appropriate permissions. For example, in the ManyBabies 1
study we described above, the public repository does not contain the
raw data contributed by participating labs, which the team could not
guarantee was anonymized; these data are instead stored in a private
repository.15

You can use your repository’s README to describe what is and is
not shared. For example, a README might state that “We provide
anonymized versions of the files originally downloaded from Qualtrics”
or “Participants did not provide permission for public distribution
of raw video recordings, which are retained on a secure university
server.” Critically, if you share the derived tabular data, it should
still be possible to reproduce the analytic results in your paper, even
if checking the provenance of those numbers from the raw data is not
possible for every reader.16

One common practice is the use of participant identifiers to link spe-
cific experimental data – which, if they are responses on standardized
measures, rarely pose a significant identifiability risk – to demographic
data sheets that might include more sensitive and potentially identifi-
able data.17 Depending on the nature of the analyses being reported,
the experimental data can then be shared with limited risk. Then a se-
lected set of demographic variables – for example, those that do not
increase privacy risks but are necessary for particular analyses – can be
distributed as a separate file and joined back into the data later.

13.2.2 Document your data collection process
In order to understand the meaning of the raw data, it’s helpful to share
as much as possible about the context in which they were collected.
This practice also helps communicate the experience that participants
had in your experiment. Documentation of this experience can take
many forms.
If the experimental experience was a web-based questionnaire, archiv-
ing this experience can be as simple as downloading the questionnaire
source.18 For more involved studies, it can be more difficult to recon-
struct what participants went through. This kind of situation is where
video data can shine (Gilmore and Adolph 2017). A video recording of
a typical experimental session can provide a valuable tutorial for other
experimenters – as well as good context for readers of your paper. This
is doubly true if there is a substantial interactive element to your exper-
imental experience, as is often the case for experiments with children.
For example, in our ManyBabies case study, the project shared “walk
through” videos of experimental sessions19 for many of the participat-

https://nyu.databrary.org/volume/896
https://nyu.databrary.org/volume/896
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20 Videos of experimental sessions also
are great demos to show in a presenta-
tion about your experiment, provided
you have permission from the partici-
pant.

21 Think of your data like a well-
ordered plate of sushi, neatly packed to-
gether without any gaps.
22 Tabular data is a precursor to “tidy”
data, which we describe in more detail
in Appendix Appendix D.

ing labs, creating a repository of standard experiences for infant devel-
opment studies. If nothing else, a video of an experimental session can
sometimes be a very nice archive of a particular context.20

Regardless of what specific documentation you keep, it’s critical to cre-
ate some record linking your data to the documentation. For a ques-
tionnaire study, for example, this documentation might be as simple as
a README that says that the data in the data/raw/ directory were
collected on a particular date using the file named experiment1.qsf.
This kind of “connective tissue” linking data to materials can be very
important when you return to a project with questions. If you spot a
potential error in your data, you will want to be able to examine the
precise version of the materials that you used to gather those data in
order to identify the source of the problem.

13.2.3 Organize your data for later analysis: Spreadsheets
Data come in many forms, but chances are that at some point during
your project you will end up with a spreadsheet full of information.
Well-organized spreadsheets cam mean the difference between project
success and failure! Awonderful article by Broman andWoo (2018) lays
out principles of good spreadsheet design. We highlight some of their
principles here (with our own, opinionated ordering):

1. Make it a rectangle.21 Nearly all data analysis software, like SPSS,
Stata, Jamovi and JASP (and many R packages), require data to be
in a tabular format.22 If you are used to analyzing data exclusively
in a spreadsheet, this kind of tabular data isn’t quite as readable,
but readable formatting gets in the way of almost any analysis you
want to do. Figure 13.5 gives some examples of non-rectangular
spreadsheets. All of these will cause any analytic package to choke
because of inconsistencies in how rows and columns are used!

Figure 13.5: Examples of non-
rectangular spreadsheet formats that
are likely to cause problems in analysis.
Adapted from Broman and Woo (2018).
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23 https://style.tidyverse.org

24 Dates in Excel deserve special men-
tion as a source of terribleness. Ex-
cel has an unfortunate habit of inter-
preting information that has nothing to
do with dates as dates, destroying the
original content in the process. Excel’s
issue with dates has caused unending
horror in the genetics literature, where
gene names are automatically converted
to dates, sometimes without the re-
searchers noticing (Ziemann, Eren, and
El-Osta 2016). In fact, some gene names
have had to be changed in order to avoid
this issue!
25 Be aware of some interesting dif-
ferences in how these files are out-
put by European vs. American versions
of Microsoft Excel! You might find
semi-colons instead of commas in some
datasets.

2. Choose good names for your variables. No one convention for name
formatting is best, but it’s important to be consistent. We tend
to follow the tidyverse style guide23 and use lowercase words sep-
arated by underscores (_). It’s also helpful to give units where
these are available, e.g., are reaction times in seconds or millisec-
onds. Table 13.1 gives some examples of good and bad variable
names.

Table 13.1: Examples of good and bad variable names. Adapted from Broman and Woo
(2018).

Good name Good alternative Avoid
subject_id SubID subject #
sex female M/F
rt_msec reaction_time_ms reaction time (millisec.)

3. Be consistent with your cell formatting. Each column should have one
kind of thing in it. For example, if you have a column of numeri-
cal values, don’t all of a sudden introduce text data like “missing”
into one of the cells. This kind of mixing of data types can cause
havoc down the road. Mixed or multiple entries also don’t work,
so don’t write “0 (missing)” as the value of a cell. Leaving cells
blank is also risky because it is ambiguous. Most software pack-
ages have a standard value for missing data (e.g. NA is what R uses).
If you are writing dates, please be sure to use the “global standard”
(ISO 8601), which is YYYY-MM-DD. Anything else can be mis-
interpreted easily.24

4. Decoration isn’t data. Decorating your data with bold headings or
highlighting may seem useful for humans, but it isn’t uniformly
interpreted or even recognized by analysis software (e.g., reading
an Excel spreadsheet into Rwill scrub all your beautiful highlight-
ing and artistic fonts) so do not rely on it.

5. Save data in plain text files. The CSV (comma-delimited) file for-
mat is a common standard for data that is uniformly understood
by most analysis software (it is an “interoperable” file format).25
The advantage of CSVs is that they are not proprietary to Mi-
crosoft or another tech company and can be inspected in a text
editor, but be careful: they do not preserve Excel formulas or for-
matting!

Given the points above, we recommend that you avoid analyzing your
data in Excel. If it is necessary to analyze your data in a spreadsheet
program, we urge you to save the raw data as a separate CSV and then
create a distinct analysis spreadsheet so as to be sure to retain the raw
data unaltered by your (or Excel’s) manipulations.

https://style.tidyverse.org
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26 The R package qualtRics can help
with this.

13.2.4 Organize your data for later analysis: Software
Many researchers do not create data by manually entering information
into a spreadsheet. Instead they receive data as the output from a web
platform, software package, or device. These tools typically provide re-
searchers limited control over the format of the resulting tabular data
export. Case in point is the survey platform Qualtrics, which – at least
at hte moment – provides data with not one but two header rows, com-
plicating import into almost all analysis software!26

That said, if your platform does allow you to control what comes out,
you can try to use the principles of good tabular data design outlined
above. For example, try to give your variables (e.g., questions in
Qualtrics) sensible names!

 ACCIDENT REPORT

Bad variable naming can lead to analytic errors!
In our methods class, students often try to reproduce the original analyses from a published study before attempting
to replicate the results in a new sample of participants. When Kengthsagn Louis looked at the code for the study
she was interested in, she noticed that the variables in the analysis code were named horribly (presumably because
they were output this way by the survey software). For example, one piece of Stata code looked like this:

gen recall1=.
replace recall1=0 if Q21==1
replace recall1=1 if Q21==3 | Q21==5 | Q21==6
replace recall1=2 if Q21==2 | Q21==4 | Q21==7 | Q21==8
replace recall1=0 if Q69==1
replace recall1=1 if Q69==3 | Q69==5 | Q69==6
replace recall1=2 if Q69==2 | Q69==4 | Q69==7 | Q69==8
ta recall1

In the process of translating this code into R in order to reproduce the analyses, Kengthsagn and a course teaching
assistant, Andrew Lampinen, noticed that some participant responses had been assigned to the wrong variables.
Because the variable names were not human-readable, this error was almost impossible to detect. Since the problem
affected some of the inferential conclusions of the article, the article’s author – to their credit – issued an immediate
correction (Petersen 2019).
The moral of the story: Obscure variable names can hide existing errors and create opportunities for further error!
Sometimes you can adjust these within your experimental software, avoiding the issue. If not, make sure to create
a “key” and translate the names immediately, double checking after you are done.
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13.2.1 Document the format of your data
Even the best-organized tabular data are not always easy to understand
by other researchers, or even yourself, especially after some time has
passed. For that reason, you should make a codebook (also known as
a data dictionary) that explicitly documents what each variable is. Fig-
ure 13.7 shows an example codebook for the trial-level data in the bot-
tom of Figure 13.6. Each row represents one variable in the associated
dataset. Codebooks often describe what type of variable a column is
(e.g., numeric, string), and what values can appear in that column. A
human-readable explanation is often given as well, providing provid-
ing units (e.g., “seconds”) and a translation of numeric codes (e.g., “test
condition is coded as 1”) where relevant.

Figure 13.6: Example participant (top)
and trial (bottom) level data from the
ManyBabies (2020) case study.

Figure 13.7: Codebook for trial-level
data (see above) from the ManyBabies
(2020) case study.

Creating a codebook need not require a lot of work. Almost any docu-
mentation is better than nothing! There are also several R packages that
can automatically generate a codebook for you, for example codebook,
dataspice, and dataMaid (Arslan 2019). Adding a codebook can sub-
stantially increase the reuse value of the data and prevent hours of frus-
tration as future you and others try to decode your variable names and
assumptions.

13.3 Sharing Research Products
As we’ve been discussing throughout this chapter, if you’ve managed
your research products effectively, sharing them with others is a far less
daunting prospect, and usually just requires uploading them to an online
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27 Meyer (2018) gives an excellent
overview of how to navigate various le-
gal and ethical issues around data sharing
in the US context.

28 As described on the relevant DHHS
page (https://www.hhs.gov/hipaa/for-
professionals/privacy/special-
topics/de-identification/index.html).
29 US IRBs are a very de-centralized
bunch and their interpretations often
vary considerably. For reasons of liabil-
ity or ethics, they may not allow data
sharing even though it is permitted by
US law. If you feel like arguing with
an IRB that takes this kind of stand, you
could mention that the DHHS rule actu-
ally doesn’t consider de-identified data
to be “human subjects” data at all, and
thus the IRBmay not have regulatory au-
thority over it. We’re not lawyers, and
we’re not sure if you’ll succeed but it
could be worth a try.

repository like the Open Science Framework. This section addresses
some potential limitations on sharing that you should bear in mind and
discusses where and how to share research products.

13.3.1 What you can and can’t share
We’ve been advocating that you share all of your research products, es-
pecially your data. In practice, however, participant privacy (as well as
a few other constraints) limits what you can share. Luckily, there are
some concrete steps you can take to make sure that you protect partici-
pants and comply with your obligations while still realizing the benefits
of data sharing.
Unless they explicitly waive their rights, participants in psychology ex-
periments have the expectation of privacy – that is, no one should be
able to identify them from the data they have provided. Protecting par-
ticipant privacy is an important part of researchers’ ethical responsibili-
ties (Ross, Iguchi, and Panicker 2018), and needs to be balanced against
the ethical imperatives to share (see Chapter 4).27

Furthermore, there are legal regulations that protect participants’ data,
though these vary from country to country. In the US, the relevant reg-
ulation is HIPAA, the Health Insurance Portability and Accountability
Act, which limits disclosures of private health information (PHI). In the
European Union, the relevant regulation is the European GDPR (Gen-
eral Data Protection Regulation). It’s beyond the scope of this book to
give a full treatment of these regulatory frameworks; you should con-
sult with your local ethics board regarding compliance, but here is the
way we have navigated this situation while still sharing data.
Under both frameworks, anonymization (or equivalently de-
identification) of data is a key concept, such that data sharing is
generally just fine if the data meet the relevant standard. Under US
guidelines, researchers can follow the “safe harbor” standard28 under
which data are considered to be anonymized if they do not contain
identifiers like names, telephone numbers, email addresses, social
security numbers, dates of birth, faces, etc. Thus, data that only contain
participant IDs and nothing from this list can typically be shared
without participant consent without a problem.29

The EU’s GDPR also allows fully anonymized data sharing, with one
big complication. Putting anonymous identifiers in a data file and re-
moving identifiable fields does not itself suffice for GDPR anonymiza-
tion if the data are still in-principle re-identifiable because you have
maintained documentation linking IDs to identifiable data like names
or email addresses. Only when the key linking identifiers to data has

https://www.hhs.gov/hipaa/for-professionals/privacy/special-topics/de-identification/index.html
https://www.hhs.gov/hipaa/for-professionals/privacy/special-topics/de-identification/index.html
https://www.hhs.gov/hipaa/for-professionals/privacy/special-topics/de-identification/index.html
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30 For an example closer to home, many
of the contributing labs in the ManyBa-
bies project logged the date of test for
each participant. This useful and seem-
ingly innocuous piece of information is
unlikely to identify any particular partic-
ipant – but alongside a social media post
about a lab visit or a dataset about travel
records, it could easily reveal a particular
participant’s identity.

been destroyed are the data truly de-identified according to this stan-
dard.

 ACCIDENT REPORT

Really anonymous?
When we first began teaching Psych 251, our experimental methods course at Stanford, one of the biggest con-
tributions of the course was simply showing students how to do experiments online. Amazon’s Mechanical Turk
crowdsourcing service was relatively new, and our IRB did not have a good sense of what this service really was.
We proposed that we would share data from the class and received approval for this practice. Our datasets were
downloaded directly from Mechanical Turk and included participants’ MTurk IDs (long alphanumeric strings that
seemed completely anonymous). Several experiences caused us to reconsider this practice!
First, we discovered that MTurk IDs were in some cases linked to study participants’ public Amazon “wish lists,”
which could both inadvertently provide information about the participant and also even potentially provide a basis
for reidentification (in rare cases). This discovery led us to consult with our IRB and provide more explicit consent
language in our class experiments, linking to instructions for making Amazon profiles private.
Then, a little later we received an irate email from an MTurk participant who had discovered their data on github
via a search for their MTurk ID. Although they were not identified in this dataset, it convinced us that at least
some participants would not like this ID shared. After another consultation with the IRB, we apologized to this
individual and removed their and others’ IDs from our github commit histories across that and other repositories.
Prior to posting data, we now take care to anonymize IDs by creating a secret mapping between the IDs we post
and the actual MTurk IDs.

De-identification is not always enough. As datasets get richer, statistical
reidentification risks go up substantially such that, with a little bit of out-
side information, data can be matched with a unique individual. These
risks are especially high with linguistic, physiological, and geospatial
data, but they can be present even for simple behavioral experiments.
In one influential demonstration, knowing a person’s location on two
occasions was often enough to identify their data uniquely in a huge
database of credit card transactions (De Montjoye et al. 2015).30 Thus,
simply removing fields from the data is a good starting point – but if you
are collecting richer data about participants’ behavior you may need to
consult an expert.
Privacy issues are ubiquitous in data sharing, and almost every experi-
mental research project will need to solve them before sharing data. For
simple projects, often these are the only issues that preclude data sharing.
However, in more complex projects, other concerns can arise. Funders
may have specific mandates regarding where your data should be shared.
Data use agreements or collaborator preferences may restrict where and
when you can share. And certain data types require much more sensi-
tivity since they are more consequential than, say, the reaction times on
a Stroop task. We include here a set of questions to walk through to plan
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31 Most of this discussion is about data,
because that’s where the community has
focused its efforts. That said, almost ev-
erything here applies to other research
products as well!

32 DOIs are those long URL-like things
that are often used to link to papers.
Turns out they can also be associated
with datasets and other research prod-
ucts. Critically, they are guaranteed
to work to find stuff, whereas standard
web URLs often go stale after several
years when people refactor their website.
Most online repositories, like the Open
Science Framework, will issue DOIs for
the research products you store there.

33 You can get a DOI for github soft-
ware through a partnershipwith Zenodo
(zenodo.org), a FAIR-compliant reposi-
tory.

your sharing (Figure 13.8). When in doubt, it’s often a good idea to con-
sult with the relevant local authority, e.g. your ethics board for ethical
issues or your research management office for regulatory issues.

Figure 13.8: A decision chart for think-
ing about sharing research products.
Adapted from Klein et al. (2018).

13.3.1 Where and how to share: the FAIR principles
For shared research products31 to be usable by others, they should meet
the FAIR standard by being Findable, Accessible, Interoperable, and
Reusable (Wilkinson et al. 2016).

– Findable products are easily discoverable to both humans and
machines. That means linking to them in research reports
using unique persistent identifiers (e.g. a digital object identifier
[DOI]).32 and attaching them with metadata describing what
they are so they can be indexed by search engines.

– Accessibility means that research products need to be preserved
across the long-term and are retrievable via their standardized
identifier.

– Interoperabilitymeans that the research products needs to be in a
format that people and machines (e.g., search engines and analysis
software) can understand.

– Reusable means that the research products need to be well orga-
nized, documented, and licensed so that others know how to use
them.

If you’ve followed the guidance in the rest of this chapter, then you will
already be well on your way to making your research products FAIR.
There are a few final steps to consider. An important decision is where
you are going to share the research products. We recommend upload-
ing the files to a repository that’s designed according to support FAIR
principles. Personal websites don’t cut it, since these sites tend to go out
of date and disappear. There’s also no easyway to find research products
on personal sites unless you know who created them. Github, though
it’s a great platform for collaboration, isn’t a FAIR repository – for one
thing, products there don’t have DOIs33 – and there are no archival
guarantees on files that are shared there. Perhaps surprisingly for some
researchers, journal supplementary materials are also not a great place to
put research products. Often supplementary materials are assigned no
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34 https://creativecommons.org
35 https://creativecommons.org/share-
your-work/public-domain/cc0/
36 https://creativecommons.org/
licenses/by/4.0/
37 https://creativecommons.org/
licenses/by/4.0/
38 Klein et al. (2018) recommend the
CC0 license, which puts no limits on
what can be done with your data. At
first blush it may seem like a license that
requires attribution is useful. But aca-
demic norms, rather than the threat of
litigation, lead to good citation practices.
In addition, more restrictive licenses can
mean that some legitimate uses of your
data or research can be blocked.

unique DOI or metadata, have limited supported formats, and have no
persistence guarantees (Evangelou, Trikalinos, and Ioannidis 2005).
Fortunately, there are many repositories that help you conform to FAIR
standards. Zenodo, Figshare, the Open Science Framework (OSF), and
the various Dataverse sites are designed for this purpose, though there
are many other domain-specific repositories that are particularly rele-
vant for different research fields. We often use the OSF as it makes it
easy to share all research products connected to a project in one place.
OSF is FAIR compatible and allows users to assign DOIs to their data
and provide appropriate metadata.
We recommend you attach a license to your research products. Aca-
demic culture is (usually) unburdened by discussion of intellectual prop-
erty and legal rights and instead relies on scholarly norms about citation
and attribution. The basic expectation is that if you rely on someone
else’s research, you explicitly acknowledge the relevant journal article
through a citation. Although norms are still evolving, using research
products created by others generally adheres to the same scholarly prin-
ciple. Research products can also be useful in non-academic contexts,
however. Perhaps you created software that a company would like
to use. Maybe a pediatrician would like to use a research instrument
you’ve been working on to assess their patients. These applications (and
many other reuses of the data) require a legal license. In practice, there
are a number of simple, open source licenses that permit reuse. We tend
to favor Creative Commons licenses34, which come in a variety of fla-
vors such as CC035 (which allows all reuse), CC-BY36 (which allows
reuse as long as there is attribution), and CC-BY-NC37 (which only al-
lows attributed, non-commercial reuse).38 Regardless of what license
you choose, having a license means that your products won’t be in a
“not sure what I’m allowed to do with this” limbo for others who are
interested in reusing them.
As we have discussed, you may want to consider storing your work in a
public repository from the outset of the project. If you are using Github
to manage your project, you can link the Git repository to the Open
Science Framework so it automatically syncs. This provides a valuable
incentive to organize your work properly throughout your project and
makes sharing super easy, because you’ve already done it! On the other
hand, this way of working can feel exposed for some researchers, and it
does carry some risks, however small, of “scooping” or pre-emption by
other groups working in the same space. Fortunately you can set up the
same Git-OSF workflow and keep it private until your ready to make
it public later on.

https://creativecommons.org
https://creativecommons.org/share-your-work/public-domain/cc0/
https://creativecommons.org/share-your-work/public-domain/cc0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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39 If there are errors in our work, we’d
certainly love to hear about it before the
article is published in a journal rather
than after!

The next stage at which you should consider sharing your research prod-
ucts is when you submit your study to a journal. If you’re still hesitant
to make the project entirely public, many repositories (including OSF)
will allow you to create special links that facilitate limited access to, for
example, reviewers and editors. In general, the earlier you share your
research products the better because there are more opportunities for
others to learn from, build on, and verify your research.39 But if neither
of these options seem appealing, please do share your research products
once your paper is accepted. Doing so will increase the value (and the
impact) of your publication.

13.4 Chapter summary
All of the hard work you put into your experiments – not to mention
the contributions of your participants – can be undermined by bad data
and project management. As our accident reports and case study show,
bad organizational practices can at a minimum cause huge headaches.
Sometimes the consequences can be even worse. On the flip side, start-
ing with a firm organizational foundation sets your experiment up for
success. These practices also make it easier to share all of the products
of your research, not just your findings. Such sharing is both useful for
individual researchers and for the field as a whole.

DISCUSSION QUESTIONS

1. Find an Open Science Framework repository that corresponds to a published paper. What is their strategy for
documenting what is shared? How easy is it to figure out where everything is and if the data and materials
sharing is complete?

2. Open up the US Department of Health and Human Services “safe harbor” standards (https://www.hhs.gov/
hipaa/for-professionals/privacy/special-topics/de-identification/index.html) and navigate to the section called
“The De-identification Standard.” Go through the list of identifiers that must be removed. Are there any on
this list that you would need to include in your dataset in order to conduct your own research? Can you think
of any others that do not fall on this list?

READINGS

– A more in-depth tutorial on various aspects of scientific openness: Klein, O., Hardwicke, T. E., Aust, F., Breuer,
J., Danielsson, H., Hofelich Mohr, A., Ijzerman, H., Nilsonne, G., Vanpaemel, W., & Frank, M. C. (2018). A
practical guide for transparency in psychological science. Collabra: Psychology, 4, 20. https://doi.org/10.1525/
collabra.158.

https://www.hhs.gov/hipaa/for-professionals/privacy/special-topics/de-identification/index.html
https://www.hhs.gov/hipaa/for-professionals/privacy/special-topics/de-identification/index.html
https://doi.org/10.1525/collabra.158
https://doi.org/10.1525/collabra.158
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1 Clarity of communication was a
founding principle of modern science.
Early proto-scientists conducting
alchemical experiments often made
their work deliberately obscure - even
writing in cryptic codes - so that others
could not discover the “powerful
secrets of nature.” Pioneers of scientific
methodology, like Francis Bacon and
Robert Boyle, pushed instead for trans-
parency and clarity. Notoriously, Issac
Newton (originally an alchemist and
later a scientist), continued to write in a
deliberately obscure fashion in order to
“protect” his work (Heard 2016).

14 WRITING

🍏 LEARNING GOALS

– Write clearly by being concise, using structure, and adjusting to your audience
– Write reproducibly by interleaving writing and analysis code
– Write responsibly by acknowledging limitations, correcting errors, and calibrating your conclusions

You’ve designed and run your experiment, and you have even analyzed
your data. This final section of Experimentology discusses reporting
your results. We begin by thinking through how to write clearly, repro-
ducibility, and responsibly (this chapter); then we turn to the question
of designing informative and pretty data visualizations (Chapter 15).
Our final chapter in the section introduces meta-analysis as a tool for
research synthesis, allowing us to contextualize research results. These
chapters focus on themes of TRANSPARENCY as well as (especially for
meta-analysis) BIAS REDUCTION and MEASUREMENT PRECISION.
All of the effort you put into designing and running an effective exper-
iment may be wasted if you cannot clearly communicate what you did.
Writing is a powerful tool – though you contribute to the conversa-
tion only once, it enables you to speak to a potentially infinite number
of readers. So it’s important to get it right! In this chapter, we’ll pro-
vide some guidance on how to write scientific papers – the primary
method for reporting on experiments – clearly, reproducibly, and re-
sponsibly.1

14.1 Writing clearly
What is the purpose of writing? “Telepathy, of course” says Stephen
King (King 2000). The goal of writing is to transfer information from
your mind to the reader’s as effectively as possible. Unfortunately, for
most of us, writing clearly does not come naturally; it is a craft we need
to work at.
One of the most effective ways to learn to write clearly is to read and to
imitate the writing you admire. Many scientific articles are not clearly
written, so you will need to be selective in which models you imitate.
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2 In the old old days, there were few con-
ventions – scientists would share their
latest findings by writing letters to each
other. But as the number of scientists
and studies increased, this approach be-
came unsustainable. The IMRaD struc-
ture gained traction in the 1800s and be-
came dominant in the mid-1900s as sci-
entific productivity rapidly expanded in
the post-war era. We think IMRaD style
articles are a big improvement, even if it
is nice to receive a letter every now and
again.

Figure 14.1: Conventional structure of a
research article. The main body of the
article consists of Introduction, Meth-
ods, Results, and Discussion (IMRaD)
sections.

Fortunately, as a reader, you will know good writing when you see it –
you will feel like the writer is sending ideas directly from their mind to
yours. When you come across writing like that, try to find more work
by the same author. The more good scientific writing you are exposed
to, the more you will develop a sense of what works and what does not.
You may pick up bad habits as well as good ones (we sure have!), but
over time, your writing will improve if you make a conscious effort to
weed out the bad, and keep the good.
There are no strict rules of clear writing, but there are some generally
accepted conventions that we will share with you here, drawing from
both general style guides and those specific to scientific writing (Zinsser
2006; Heard 2016; Gernsbacher 2018; Savage and Yeh 2019).

14.1.1 The structure of a scientific paper
A scientific paper is not a novel. Rather than reading from beginning
to end, readers typically jump between sections to extract information
efficiently (Doumont 2009). This “random access” is possible because
research articles typically follow the same conventional structure (see
Figure 14.1). The main body of the article includes four main sections:
Introduction, Methods, Results, and Discussion (IMRaD).2 This struc-
ture has a narrative logic: what’s the knowledge gap? (introduction);
how did you address it? (methods); what did you find? (results); what
do the results mean? (discussion).
Structure helps writers as well as readers. Try starting the writing pro-
cess with section headings as a structure, then flesh it out, layer by layer.
In each section, start by making a list of the key points you want to con-
vey, each representing the first sentence of a new paragraph. Then add
the content of each paragraph and you’ll be well on your way to having
a full first draft of your article.
Imagine that the breadth of focus in the body of your article has an
“hourglass” structure (Figure 14.1). The start of the introduction should
have a broad focus, providing the reader with the general context of
your study. From there, the focus of the introduction should get in-
creasingly narrow until you are describing the specific knowledge gap
or problem you will address and (briefly how you are going to address
it. The methods and results sections are at the center of the hourglass
because they are tightly focused on your study alone. In the discussion
section, the focus shifts in the opposite direction, from narrow to broad.
Begin by summarizing the results of your study, discuss limitations, then
integrate the findings with existing literature and describe practical and
theoretical implications.
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Research articles are often packed with complex information; it is easy
for readers to get lost. A “cross reference” is a helpful signpost that tells
readers where they can find relevant additional informationwithout dis-
rupting the flow of your writing. For example, you can refer the reader
to data visualizations by cross referencing to figures or tables (e.g., “see
Figure 1”), or additional methodological information in the supplemen-
tary information (e.g., “see Supplementary Information A”).
One useful trick for structuring complex arguments is to cross refer-
ence your research aims/hypotheses with your results. For example,
you could introduce numbered hypotheses in the introduction of an
article and then refer to them directly when reporting the relevant anal-
yses and results. These cross references can serve to remind readers how
different results or analyses relate back to your research goals.

14.1.2 Paragraphs, sentences, and words
Writing an article is like drawing a human form. If you begin by sketch-
ing the clothes, you risk adding beautiful textures onto an impossible
shape. Instead, you have to start by understanding the underlying skele-
ton and then gradually adding layers until you can visualize how cloth
hangs on the body. The structure of an article is the “skeleton” and
the paragraphs and sentences are the “flesh”. Only start thinking about
paragraphs and sentences once you have a solid outline in place.
Ideally, each paragraph should correspond to a single point in the arti-
cle’s outline, with the specifics necessary to convince the reader embed-
ded within. “P-E-E-L” (Point - Explain - Evidence - Link) is a useful
paragraph structure, particularly in the introduction and discussion sec-
tions. First, state the paragraph’s message succinctly in the first sentence
(P). The core of the paragraph is dedicated to further explaining the
point and providing evidence (E-E; you can also include a third “E” –
an example). At the end of the paragraph, take a couple of sentences
to remind the reader of your point and set up a link to the next para-
graph.
Since each sentence in a paragraph has a purpose, you can compose and
edit the sentence by asking how its form serves that purpose. For ex-
ample, short sentences are great for making strong initial points. On
the other hand, if you only use short sentences your writing may come
across as monotonous and robotic. Try varying sentence lengths to give
your writing a more natural rhythm. Just avoid cramming too much in-
formation into the same sentence; very long sentences can be confusing
and difficult to process.
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3 One of our favorite examples of an en-
joyable article is Cutler (1994), a delight-
ful piece that uses the form of the article
to make a point about human language
processing. Read it: you’ll see!

You can also use sentence structure as a scaffold to support the reader’s
thinking. Start sentences with something the reader already knows. For
example, rather than writing “We performed a between-subjects 𝑡-test
comparing performance in the experimental and control groups to ad-
dress the cognitive dissonance hypothesis”, write “To address the cog-
nitive dissonance hypothesis, we compared performance in the experi-
mental group and control group using a between-subjects t-test.”
Human readers are good at processing narratives about people. Yet of-
ten scientists compromise the research narrative by removing themselves
from the process, sometimes even using awkward grammatical construc-
tions to do so. For example, scientists sometimes write “the data were
analysed” or, worse, “an analysis of the data was carried out.” Many of
us were taught to write sentences like these, but it’s much clearer to say
“we analyzed the data.”
Similarly, many of us tend to hide our views with frames and caveats:
“[It is believed that/Research indicates that/Studies show that] money
leads to increased happiness (Frog & Toad, 1963).” If you truly do be-
lieve that money causes happiness, simply assert it – with a citation if
necessary. Save caveats for cases where someone believes that money
causes happiness, but it’s not you. Emphasize uncertainty where you in
fact feel that uncertainty is warranted and readers will take your doubts
more seriously.

14.2 Advice
Scientific writing has a reputation for being dry, dull, and soulless.
While it’s true that writing research articles is more constrained than
writing fiction, there are still ways to surprise and entertain your reader
with metaphor, alliteration, and even humor. As long as your writing
is clear and accurate, we see no reason why you cannot also make
it enjoyable. Enjoyable articles are easier to read and more fun to
write.3

Here are a few more pieces of advice about expressing yourself
clearly.
Be explicit. Avoid vagueness and ambiguity. The more you leave the
meaning of your writing to your reader’s imagination the greater the
danger that different readers will imagine different things! So be direct
and specific.
Be concise. Maximize the signal to noise ratio in your writing by omit-
ting needless words and removing clutter (Zinsser 2006). For example,
say we investigated rather than we performed an investigation of and say if
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4 Barnett and Doubleday (2020) found
that acronyms are widely used in re-
search articles and argued that they un-
dermine clear communication. Here is
one example of text Barnett and Dou-
bleday extracted from a 2019 publica-
tion to illustrate the point: “Applying
PROBAST showed that ADO, B-AE-D,
B-AE-D-C, extended ADO, updated
ADO, updated BODE, and a model de-
veloped by Bertens et al. were derived
in studies assessed as being at low risk of
bias.”

rather than in the event that. Don’t try to convey everything you know
about a topic – a research report is not an essay. Include only what
you need to achieve the purpose of the article and exclude everything
else.
Be concrete. Concrete examples make abstract ideas easier to grasp. But
some ideas are just hard to express in prose, and diagrams can be very
helpful in these cases. For example, it may be clearer to illustrate a com-
plex series of exclusion criteria using a flow chart rather than text. You
can even use photos, videos, and screenshots to illustrate experimental
tasks (Heycke and Spitzer 2019).
Be consistent. Referring to the same concept using different words can
be confusing because itmay not be clear if you are referring to a different
concept or just using a synonym. For example, in everyday conversation,
“replication” and “reproducibility” may sound like two different ways
to refer to the same thing, but in scientific writing, these two concepts
have different technical definitions, so we should not use them inter-
changeably. Define each technical term once and then use the same
term throughout the manuscript.
Adjust to your audience. Most of us adjust our conversation style de-
pending on who we’re talking to; the same principle applies to good
writing. Knowing your audience is more difficult with writing, because
we cannot see the reader’s reactions and adjust accordingly. Neverthe-
less, we can make some educated guesses about who our readers might
be. For example, if you are writing an introductory review article, you
may need to pay more attention to explaining technical termsn than if
you are writing a research article for a specialty journal.
Check your understanding. Unclear writing can be a symptom of un-
clear thinking. If an idea doesn’t make sense in your head, how will it
ever make sense on the page? In fact, trying to communicate something
in writing is an excellent way to probe your understanding and expose
logical gaps in your arguments. So if you are finding it difficult to write
clearly, stop and ask yourself do I know what I want to say? If the problem
is unclear thinking, then it might be worth talking out the ideas with a
colleague or advisor before you try to write them down.
Use acronyms sparingly. It’s tempting to replace lengthy terminology
with short acronyms — why say “cognitive dissonance theory” when
you can say “CDT”? Unfortunately, acronyms can increase the reader’s
cognitive burden and cause misunderstandings.4 For example, if you
shorten “odds ratio” to “OR”, the reader has to take the extra step of
translating “OR” back to “odds ratio” every time they encounter it. The
problem multiplies as you introduce more acronyms into your article.
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5 Seek out people who are willing to tell
you that your writing is not good! They
may not make you feel good, but they
will help you improve.

Worse, for some readers, “OR” tends to mean “operating room”, not
“odds ratio.” Acronyms can be useful, but usually only when they are
widely used and understood.

14.2.1 Drafting and revision
The clearest and most effortless-seeming scientific writing has proba-
bly gone through extensive revision to appear that way. It can sur-
prise many students to know the amount of revision that has gone into
many “breezy” articles. For example, Tversky and Kahneman repeat-
edly drafted and re-drafted each word of their famous (and highly read-
able) articles on judgment and decision-making, hunched over the type-
writer together (Lewis 2016).
Think of the article you are writing as a garden. Your first draft may
be an unruly mess of intertwined fronds and branches. Several rounds
of pruning and sculpting will be needed before your writing reaches its
most effective form. You’ll be amazed how often you find words you
can omit or elaborate sentences you can simplify.
It can be difficult to judge if your ownwriting has achieved its telepathic
goal, especially after several rounds of revision. Try to get feedback
from somebody in your target audience. Their comments – even if
not wholly positive – will give you a good sense of how much of your
argument they understood (and agreed with).5

14.3 Writing reproducibly
Many research results are not reproducible -— that is, the numbers and
graphs that they report can’t be recreated by repeating the original anal-
yses – even on the original data. As we discussed in Chapter 3, a lack of
reproducibility is a big problem for the scientific literature; if you can’t
trust the numbers in the articles you read, it’s much harder to build on
the literature.
Fortunately, there are number of tools and techniques available that you
can use to write fully reproducible research reports. The basic idea is to
create an unbroken chain that links every single part of the data analysis
pipeline, from the raw data through to the final numbers reported in
your research article. This linkage enables you – and hopefully others as
well – to trace the provenance of every number and recreate (reproduce)
it from scratch.



14 WRITING 276

6 Modulo the privacy concerns discussed
in Chapter 13, of course.

14.3.1 Why write reproducible reports?
There are (at least) three reasons to write reproducible reports. First,
data analysis is an error-prone activity. Without safeguards in place, it
can be easy to accidentally overwrite data, mislabel experimental con-
ditions, or copy and paste the wrong statistics. As we discussed in Chap-
ter 3, one study found that nearly half of a sample of psychology papers
contained obvious statistical reporting errors (Nuijten et al. 2016). You
can reduce opportunities for error by adopting a reproducible analysis
workflow that avoids error-prone manual actions, like copying and past-
ing.
Second, technical information about data analysis can be difficult to
communicate in writing. Prose is often ambiguous and authors can in-
advertently leave out important details (Hardwicke et al. 2018). By con-
trast, a reproducible workflow documents the entire analysis pipeline
from raw data to research report exactly as it was implemented, describ-
ing the origin of any reported values and allowing readers to assess, ver-
ify, and repeat the analysis process.
Finally, reproducible workflows are typically more efficient workflows.
For example, youmay realize you forgot to perform data exclusions and
need to rerun the analysis. You may produce a graph and then decide
you’d prefer a different color scheme. Or perhaps you want to output
the same results table in a PDF document and in a PowerPoint slide. In
a reproducible workflow, all of the analysis steps are scripted, and can
be easily re-run at the click of a button. You (and others) can also reuse
parts of your code in other projects, rather than having to write from
scratch.

14.3.2 Principles of reproducible writing
Below we outline some general principles of reproducible writing.
These can be put in practice in a number of different software ecosys-
tems. We recommend RMarkdown and its successor, Quarto, which
are ways of writing data analysis code in R so that it compiles into
spiffy documents or even websites. (This book was written in Quarto).
Appendix C gives an introduction to the nuts and bolts of using these
tools to create scientific papers.

– Never break the chain. Every part of the analysis pipeline – from
raw data6 to final product – should be present in the project
repository. By consulting the repository documentation, a reader
should be able to follow the steps to go from the raw data to the
final manuscript, including tables and figures.
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7 Several of us have libraries of old Mat-
lab code. While discounted licenses are
available to students, a full-price soft-
ware license can be a major barrier to re-
searchers with limited resources. if you
move away from Matlab, it’s also terri-
ble to have to ask yourself whether it’s
worth the price of another year’s license
just to rerun one old analysis.

– Script everything. Try to ensure that each step of the analysis
pipeline is executed by computer code rather than manual ac-
tions such as copying and pasting or directly editing spreadsheets.
This practice ensures that every step is documented via executable
code rather than ambiguous description, ensuring it can be repro-
duced. Imagine, for example, that you decided to re-code a vari-
able in your dataset. You could use the “find and replace” func-
tion in Excel, but this action would not be documented – you
might even forget that you did it! A better option would be to
write an R script. While a scripted pipeline can be a pain to set
up the first time, by the third time you rerun it, it will save you
time.

– Use literate programming. The meaning of a chunk of computer
code is not always obvious to another user, especially if they’re
not an expert. Indeed, we frequently look at our own code and
scratch our heads, wondering what on earth it’s doing. To avoid
this problem, try to structure your code around plain language
comments that explain what it should be doing, a technique
known as “literate programming” (Knuth 1992).

– Use defensive programming. Errors can still occur in scripted
analyses. Defensive programming is a series of strategies to help
anticipate, detect, and avoid errors in advance. A typical defensive
programming tool is the inclusion of tests in your code, snippets
that check if the code or data meet some assumptions. For exam-
ple, you might test if a variable storing reaction times has taken on
values below zero (which should be impossible). If the test passes,
the analysis pipeline continues; if the test fails, the pipeline halts
and an error message appears to alert you to the problem.

– Use free/open-source software and programming languages. If
possible, avoid using commercial software, like SPSS or Matlab,
and instead use free, open-source software and programming lan-
guages, like JASP, Jamovi, R, or Python. This practice will make
it easier for others to access, reuse, and verify your work – includ-
ing yourself !7

– Use version control. In Chapter 13, we introduced the benefits of
version control – a great way to save your analysis pipeline incre-
mentally as you build it, allowing you to roll back to a previous
version if you accidentally introduce errors.

– Preserve the computational environment. Even if your analysis
pipeline is entirely reproducible on your own computer, you still
need to considerwhether it will run on somebody else’s computer,
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8 If you are interested in going in this
direction, we recommend Peikert and
Brandmaier (2021), which gives an ad-
vanced tutorial for complete computa-
tional reproducibility using Docker and
make as tools to supplement git and R
Markdown.

9 You can also incorporate Google Docs
into this workflow – we find that cloud
platforms like Docs are especially useful
when gathering comments from multi-
ple collaborators on the same document.
Unfortunately, you cannot generate a
Google Doc from R Markdown, so you
will need to import and convert or else
copy and paste.
10 New packages such as “track-
down” could help as well:
https://claudiozandonella.github.
io/trackdown/.

or even your own computer after software updates. You can ad-
dress this issue by documenting and preserving the computational
environment in which the analysis pipeline runs successfully. Var-
ious tools are available to help with this, including Docker, Code
Ocean, renv (for R), and pip (for Python).8

14.3.3 The reproducibility-collaboration trade-off
We would love to leave it there and watch you walk off into the sunset
with a spring in your step and a reproducible report under your arm.
Unfortunately, we have to admit that writing reproducibly can create a
few practical difficulties when it comes to collaboration.
A major aspect of collaboration is exchanging comments and inline text
edits with co-authors. You can do this exchangewithRMarkdownfiles
and Git, but these tools are not as user-friendly as, say, Word or Google
Docs, and some collaborators will be completely unfamiliar with them.
Most journals also expect articles to be submitted as Word documents.
Outputting R Markdown files to Word can often introduce formatting
issues, especially for moderately complex tables. So until more user-
friendly tools are introduced, some compromise between reproducibil-
ity and collaboration may be necessary. Here are two workflow styles
for you to consider.
First, the maximal reproducibility approach. If your collaborators are
familiar with R Markdown and you don’t mind exchanging comments
and edits via Git – or if they don’t mind giving you lists of comments
and changes that you implement in the R Markdown document – then
you can maintain a fully reproducible workflow for your project. The
journal submission and publication process may still introduce some is-
sues such as incorporating changes made by the copy editor, but at least
your submittedmanuscript (and the preprint you have hopefully posted)
will be fully reproducible.
Second, the two worlds approach. This workflow is a bit clunky, but it
facilitates collaboration and maintains reproducibility. First, write your
results section in R Markdown and generate a Word document (see
Appendix C). Then, write the remainder of the manuscript in Word,
including incorporating comments and changes from collaborators.
When you have a final version, copy and paste the abstract, introduction,
methods, and discussion into the R Markdown document.9 Integrating
any changes made to the results section back into the R Markdown
requires a bit more effort, either using manual checking or Word’s
“compare documents” feature.10 The advantage of this approach is
that you have a reproducible document and your collaborators have

https://claudiozandonella.github.io/trackdown/
https://claudiozandonella.github.io/trackdown/
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11 It can be easy to overlook important
details, especially when you reach the
end of a project. Looking back at your
study preregistration can be a helpful re-
minder. Reporting guidelines for differ-
ent research designs can also provide use-
ful checklists (Appelbaum et al. 2018).

not had to deviate from their preferred workflow. Unfortunately, it
requires more effort from you and is slightly more error-prone than
the maximal reproducibility approach.

14.4 Writing responsibly
As a scientific writer, you have both professional and ethical responsi-
bilities. You must communicate all relevant information about your
research so as to enable proper evaluation and verification by other sci-
entists. It is also important not to overstate your findings and calibrate
your conclusions to the available evidence (Hoekstra and Vazire 2021).
If errors are found in your work, you must respond and correct them
when possible (Bishop 2018). Finally, you must meet scholarly obliga-
tions with regards to authorship and citation practices.

14.4.1 Responsible disclosure and interpretation
Back in school, we all learned that getting the right answer is not enough
– you need to demonstrate how you arrived at that answer in order to
get full marks. The same expectation applies to research reports. Don’t
just tell the reader what you found, tell them how you found it.11 That
means describing the methods in full detail, as well as sharing data, ma-
terials, and analysis scripts.
In a journal article, you typically have some flexibility in terms of how
much detail you provide in the main body of the article and how much
you relegate to the supplementary information. Readers have different
needs; some may just want to know the highlights, and some will need
detailed methodological information in order to replicate your study.
As a rule of thumb, try to make sure there is nothing relegated to the
supplementary information that might surprise the reader. You cer-
tainty should not use the supplementary information to hide important
details deliberately or use it as a disorganized dumping ground – the
principles of clear writing still apply!
Here are a few more guidelines for responsible writing:

– Don’t overclaim. Scientists often feel they are (and unfortunately,
often are) evaluated based on the results of their research, rather
than the quality of their research. Consequently, it can be tempt-
ing to make bigger and bolder claims than are really justified by
the evidence. Think carefully about the limitations of your re-
search and calibrate your conclusions to the evidence, rather than
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12 Should you just make your claims
more modest, and avoid writing about
your study’s limitations? The balance
between claims and limitations is tricky.
One way to navigate this issue is to ask
yourself, “is it OK to sayX in the abstract
of my article, if I later go on to say state a
limitation relevant to that claim, or will
the reader feel tricked?”

what you wish you were able to claim. Ensure that your con-
clusions are appropriately stated throughout the manuscript, es-
pecially in the title and abstract.

– Acknowledge limitations on interpretation and generalizability.
Even if you calibrate your claims appropriately throughout, there
are likely specific limitations that are worth discussing, either as
you introduce the design of the study in the introduction or as you
interpret it in the discussion section. For example, if your exper-
iment used one particular manipulation to instantiate a construct
of interest, you might discuss this limitation and how it might be
addressed by future work. Think carefully about the limitations
of your study, state them clearly, and consider how they impact
your conclusions (Clarke et al. 2023).12 Discussions of limitations
are a great point to make an explicit statement about the generaliz-
ability of your findings (see Simons, Shoda, and Lindsay 2017 for
guidance about these kinds of “Constraints on Generality” state-
ments).

– Discuss, don’t debate. The purpose of the discussion section is
to help the reader interpret your research. Importantly, a journal
article is not a debate – don’t feel the need to argue dogmatically
for a particular position or interpretation. You should discuss the
strengths and weaknesses of the evidence, and the relative merits
of different interpretations. For example, perhaps there is a po-
tential confounding variable that you were unable to eliminate
with your research design. The reader might be able to spot this
themselves, but regardless, its your responsibility to highlight it.
Perhaps on balance you think the confound is unlikely to explain
the results – that’s fine, but you need to explain your reasoning
to the reader.

– Disclose conflicts of interest and funding. Researchers are usually
personally invested in the outcomes of their research and this in-
vestment can lead to bias (for example, overclaiming or selective
reporting). But sometimes your potential personal gains from a
piece of research rise above a threshold and are considered con-
flicts of interest. Where this threshold lies is not always com-
pletely clear. The most obvious conflicts of interest occur when
you stand to benefit financially from the outcomes of your re-
search (for example a drug developer evaluating their own drug).
If you are in doubt about whether you have a potential conflict of
interest, then you should disclose it. You should also disclose any
funding you received for the research, partly because this is often
a requirement of the funder, and partly because it may represent
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13 As jazz musician Miles Davis once
said, “If you hit a wrong note, it’s the
next note that you play that determines
if it’s good or bad.”

a conflict of interest, for example if the funder has a particular
stake in the outcome of the research. To avoid ambiguity, you
should also disclose when you do not have a conflict of interest or
funding to declare.

– Report transparently. In Chapter 11, you learned about the prob-
lem of selective reporting and how this practice can bias the re-
search literature. There are several ways to avoid this issue in your
own work. First, assuming you have reported everything, include
a statement in the methods section that explicitly says so. A state-
ment suggested by Simmons, Nelson, and Simonsohn (2012) is
“We report how we determined our sample size, all data exclu-
sions (if any), all manipulations, and all measures in the study.” If
you have preregistered your study, clearly link to the preregistra-
tion and state whether you deviated from your original plan. You
can include a detailed preregistration disclosure table in the sup-
plementary information and highlight any major deviations in the
methods section. In the results section, clearly identify (e.g., with
sub-headings) which analyses were pre-planned and included in
the preregistration (confirmatory) and which were not planned
(exploratory).

14.4.2 Responsible handling of errors
It is not your responsibility to never make mistakes. But it is your re-
sponsibility to respond to errors in a timely, transparent, and professional
manner (Bishop 2018).13 Regardless of how the error was identified
(e.g., by yourself or by a reader), we recommend contacting the jour-
nal and requesting that they publish a correction statement (sometimes
called an erratum). Several of us have corrected papers in the past. If
the error is serious and cannot be fixed, you should consider retracting
the article.
A correction/retraction statement should include the following infor-
mation:

1. Acknowledge the error. Be clear that an error has occurred.
2. Describe the error. Readers need to know the exact nature of the

error.
3. Describe the implications of the error. Readers need to know how

the error might affect their interpretation of the results.
4. Describe how the error occurred. Knowing how the error hap-

pened may help others avoid the same error.
5. Describe what you have done to address the error. Others may

learn from solutions you’ve implemented.
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6. Acknowledge the person who identified the error. Identifying er-
rors can take a lot of work; if the person is willing to be identified,
give credit where credit is due.

 ACCIDENT REPORT

In 2018, at a crucial stage of her career, Julia Strand published an important study in the prestigious journal Psycho-
nomic Bulletin & Review. She presented the work at conferences and received additional funding to do follow-up
studies. But several months later, her team found that they could not replicate the result.
Puzzled, she began searching for the cause of the discrepant results. Eventually, she found the culprit – a program-
ming error. As she sat staring at her computer in horror, she realized that it was unlikely anyone else would ever
find the bug. Hiding the error must have seemed like the easiest thing to do.
But she did the right thing. She spent the next day informing her students, her co-authors, the funding officer,
the department chair overseeing her tenure review, and the journal – to initiate a retraction of the article. And…
it didn’t ruin her career. Everybody was understanding and appreciated that she was doing the right thing. The
journal corrected the article. She didn’t lose her grant. She got tenure. And a lot of scientists, including us, admire
her for what she did.
Honest mistakes happen – it’s how you respond to them that matters (Strand 2021). In fact, survey research with
both scientists and the general public suggests that scientists’ reputations are built on the perception that they try to
“get it right,” not just to “be right” (Ebersole, Axt, and Nosek 2016).

14.4.3 Responsible citation
Citing prior work that your study builds upon ensures that researchers
receive credit for their contributions and helps readers to verify the basis
of your claims. You should certainly avoid copying the work of others
and presenting it as your own (see Chapter 4 for more on plagiarism).
Try to be explicit about why you are citing a source. For example, does
it provide evidence to support your point? Is it a review paper that gives
the reader useful background? Or is it a description of a theory you are
testing?
Make sure you read articles before you cite them. Stang, Jonas, and
Poole (2018) reports a cautionary tale in which a commentary criticiz-
ing a methodological tool was frequently cited as supporting the use of
that tool! It seems that many authors had not read the paper they were
citing, which is both misleading and embarrassing.
Try to avoid selective or uncritical citation. It is misleading to cite only
research that supports your argument and ignoring research that doesn’t.
You should provide a balanced account of prior work, including contra-
dictory evidence. Make sure to evaluate and integrate evidence from
prior studies, rather than simply describing them. Remember – every
study has limitations.
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14 In 1975, physicist and mathematician
Jack H. Hetherington wrote a paper he
intended to submit to the journal Phys-
ical Review Letters. We’re not sure why,
butHetheringtonwrote the paper in first
person plural (i.e., referring to himself as
“we” rather than “I”). He subsequently
discovered that the journal would not ac-
cept the use of “we” for single-authored
articles. Hetherington had painstakingly
tapped out the article on his typewriter,
an exercise hewas not keen to repeat. In-
stead, he opted for a less taxing solution
and named his cat – a feline by the name
of F. D. C. Willard – as a coauthor. The
paper was accepted and published (Het-
herington and Willard 1975).

15 For larger projects, the tool Tenzing
allows for CREDIT statements to be gen-
erated automatically from standardized
forms (Holcombe et al. 2020).
16 If you have find yourself in a situa-
tion where all authors have contributed
equally, you may have to draw inspi-
ration from historical examples and de-
termine authorship order based on a
25 game croquet series (Hassell and
May 1974), rock, paper, scissors (Kupfer,
Webbeking, and Franklin 2004), or a
brownie bake-off (Young and Young
1992). Alternatively, you can adopt the
method of Lakens, Scheel, and Isager
(2018) and randomize the authorship or-
der in R!

14.4.4 Responsible authorship practices
It is an ethical responsibility to credit the individuals who worked on a
research project – both so that they can reap the benefits if the work is
influential, but also so that they can take responsibility for errors.14

Currently in academia, the authorship model is dominant. Under this
model, authorship and authorship order are important signals about re-
searchers contributions to a project. It is generally expected that to qual-
ify for authorship, an individual should have made a substantial contri-
bution to the research (e.g., design, data collection, analysis), assisted
with writing the research report, and takes joint responsibility for the
research along with the other co-authors. Individuals who worked on
the project who do not reach this threshold are instead mentioned in a
separate acknowledgements section and not considered authors.
Authorship order is often understood to signal the nature and extent of
an author’s contribution. In psychology (and neighboring disciplines),
the first author and last author are typically the project leaders. Typically
– though certainly not always! – the first author is a junior colleague
who implements the project and the last author is a senior colleague
who supervises the project.
It has been argued that the authorship model should be replaced with
a more inclusive contributorship model in which all individuals who
worked on the project are acknowledged as ‘contributors’. Unlike the
authorship model, there is no arbitrary threshold for contributorship.
The actual contributions of each individual are explicitly described,
rather than relying on the implicit conventions of authorship order.
The contributorship model may facilitate collaboration and ensure
student assistants are properly credited.
You will probably find that most journals still expect you to use the
authorship model. Nevertheless, it is usually possible – and sometimes
required – to include a contributorship statement in your article that
describes what everybody did. For example, the CREDIT taxonomy
provides a structured taxonomy of research tasks, making for uniform
contributorship reporting.15

Because authorship is such an important signal in academia, it’s impor-
tant to agree on an authorship plan with your collaborators (particularly
who will be the first and last authors) as early as possible.16
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14.5 Chapter summary: Writing
Writing a scientific article can be a rewarding endpoint for the process of
doing experimental research. But writing is a craft, and writing clearly
– especially about complex and technical topics – can require substan-
tial practice and many drafts. Further, writing about research comes
with ethical and professional responsibilities that are different than the
burdens of other kinds of writing. A scientific author must work to en-
sure the reproducibility of their findings and report on those findings
responsibly, noting limitations and weaknesses as well as strengths.

DISCUSSION QUESTIONS

1. Find a writing buddy and exchange feedback on a short piece of writing (the abstract of a paper in progress, a
conference abstract, or even a class project proposal would be good examples). Think about how to improve
each other’s writing using the advice offered in this chapter.

2. Identify a published research article with openly available data and see if you can reproduce an analysis in
their paper by recovering the exact numerical values they report. You can find support for this exercise at
the Social Science Reproduction Platform (https://www.socialsciencereproduction.org) or ReproHack (https:
//www.reprohack.org). Discuss with a friend what challenges you faced in this exercise and how they might
be avoided in your own work.
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15 VISUALIZATION

🍏 LEARNING GOALS

– Analyze the principles behind informative visualizations
– Incorporate visualization into an analysis workflow
– Learn to make “the design plot”: a standard visualization of experimental data
– Select different visualizations of variability and distribution
– Connect visualization concepts to measurement principles

What makes visualizations so useful, and what role do they play in
the experimenter’s toolkit? Simply put, data visualization is the act of
“making the invisible visible.” Our visual systems are remarkably pow-
erful pattern detectors, and relationships that aren’t at all clear when
scanning through rows of raw data can immediately jump out at us when
presented in an appropriate graphical form (Zacks and Franconeri 2020).
Good visualizations aim to deliberately harness this power and put it to
work at every stage of the research process, from the quick sanity checks
we run when first reading in our data to the publication-quality figures
we design when we are ready to communicate our findings.
Yet our powerful pattern detectors can also be a liability; if we’re not
careful, we can easily be fooled into seeing patterns that are unreliable
or even misleading. As psychology moves into an era of bigger data and
more complex behaviors, we become increasingly reliant on data visu-
alization literacy (Börner, Bueckle, and Ginda 2019) to make sense of
what is going on. Further, as a researcher reporting about your data, cre-
ating appropriate visualizations that are aligned with your analyses (as
well as your design and preregistration) is an important part of TRANS-
PARENCY and BIAS REDUCTION in your reporting.

CASE STUDY

Mapping a pandemic
In 1854, a deadly outbreak of cholera was sweeping through London. The scientific consensus at the time was that
diseases like cholera spread through breathing poisonous and foul-smelling vapors, an idea known as the “miasma
theory” (Halliday 2001). An obstetrician and anesthesiologist named John Snow, however, had proposed an alter-
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native theory: rather than spreading through foul air, he thought that cholera was spreading through a polluted
water supply (Snow 1855). To make a public case for this idea, he started counting cholera deaths. He marked
each case on a map of the area, and indicated the locations of the water pumps for reference. Furthermore, a line
could be drawn representing the region that was closest to each water pump, a technique which is now known
as a Voronoi diagram (https://en.wikipedia.org/wiki/Voronoi_diagram). The resulting illustration clearly reveals
that cases clustered around an area called Golden Square, which received water from a pump on Broad Street (Fig-
ure 15.1). Although the precise causal role of these maps in Snow’s own thinking is disputed, and it is likely that he
produced them well after the incident (Brody et al. 2000), they nonetheless played a significant role in the history
of data visualization (Friendly and Wainer 2021).

Figure 15.1: Mapping out a cholera epidemic (Snow 1854). Dotted line shows region for which Broad Street pump is nearest.

Nearly two centuries later, as the COVID-19 pandemic swept through the world, governmental agencies like the
CDC produced maps of the outbreak that became much more familiar (Figure 15.2).

Figure 15.2: Map showing the counts of COVID hospitalizations by state since August 2020 as of January 2024 (from the CDC
COVID Data Tracker, https://covid.cdc.gov/covid-data-tracker). Usage does not constitute endorsement or recommendation by the
U.S. Government, Department of Health and Human Services, or Centers for Disease Control and Prevention.

https://en.wikipedia.org/wiki/Voronoi_diagram
https://covid.cdc.gov/covid-data-tracker
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These maps make abstract statistics visible: By assigning higher cumulative case rates to darker colors, we can see
at a glance which areas have been most affected. And we’re not limited by the spatial layout of a map. We’re now
also used to seeing the horizontal axis correspond to time and the vertical axis correspond to some value at that time.
Curves like the following, showing the weekly counts of new cases, allow us to see other patterns, like the rate of
change. Even though more and more cases accumulate every day, we can see at a glance the different “waves” of
cases, and when they peaked (Figure 15.3).

Figure 15.3: Weekly counts of new reported COVID hospital admissions in the US between August 2020 and January 2024
(from the CDC COVID Data Tracker, https://covid.cdc.gov/covid-data-tracker). Usage does not constitute endorsement or recom-
mendation by the U.S. Government, Department of Health and Human Services, or Centers for Disease Control and Prevention.

While these visualizations capture purely descriptive statistics, we often want our visualizations to answer more
specific questions. For example, we may ask about the effectiveness of vaccinations: how do case rates differ across
vaccinated and unvaccinated populations? In this case, we may talk about “breaking out” a curve by some other
variable, like vaccination status (Figure 15.4).

Figure 15.4: Rates of COVID cases by vaccination status (from the CDC COVID Data Tracker, https://covid.cdc.gov/covid-
data-tracker). Usage does not constitute endorsement or recommendation by the U.S. Government, Department of Health and Human
Services, or Centers for Disease Control and Prevention.

From this visualization, we can see that unvaccinated individuals are about 6x more likely to test positive. At the
same time, these visualizations were produced using observational data, which makes it challenging to draw causal
inferences. For example, people were not randomly assigned to vaccination conditions, and those who have avoided
vaccinations may differ in other ways than those who sought out vaccinations. Additionally, you may have noticed
that these visualizations typically do not give a sense of the raw data, the sample sizes of each group, or uncertainty
about the estimates. In this chapter, we will explore how to use visualizations to communicate the results of
carefully controlled psychology experiments, which license stronger causal inferences.

https://covid.cdc.gov/covid-data-tracker
https://covid.cdc.gov/covid-data-tracker
https://covid.cdc.gov/covid-data-tracker
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1 For the purposes of understanding the
examples in this chapter, it should be
sufficient to work through the tutorials
on data manipulation and visualization
in Appendix D and Appendix E.

15.1 Basic principles of (confirmatory) visualization
In this section, we begin by introducing a few simple guidelines to keep
in mind when making informative visualizations in the context of ex-
perimental psychology.1 Remember that our needsmay be distinct from
other fields, such as journalism or public policy. You may have seen
beautiful and engaging full-page graphics with small print and a wealth
of information. The art of designing and producing these graphics is
typically known as infoviz and should be distinguished from what we
call statistical visualization (Gelman and Unwin 2013).
Roughly, infoviz aims to construct rich and immersive worlds to visu-
ally explore: a reader can spend hours pouring over the most intricate
graphics and continue to find new and intriguing patterns. Statistical
visualization, on the other hand, aims to crisply convey the logic of a
specific inference at a glance. These visualizations are the production-
ready figures that anchor the results section of a paper and accompany
the key, pre-registered analyses of interest. In this section, we review
several basic principles of making statistical visualizations. We then re-
turn below to the role of visualization in more exploratory analyses.

15.1.1 Principle 1: Show the design
There are so many different kinds of graphs (bar graphs, line graphs,
scatter plots, and pie charts) and so many different possible attributes of
those graphs (colors, sizes, line types). How do we begin to decide how
to navigate these decisions? The first principle guiding good statistical
visualizations is to show the design of your experiment.
The first confirmatory plot you should have in mind for your exper-
iment is the design plot. Analogous to the “default” or “saturated”
model in Chapter 7, the design plot should show the key dependent
variable of the experiment, broken down by all of the key manipula-
tions. Critically, design plots should neither omit particular manipu-
lations because they didn’t yield an effect or include extra covariates
because they seemed interesting after looking at the data. Both of these
steps are the visual analogue of p-hacking! Instead, the design plot is the
“preregistered analysis” of your visualization: it illustrates a first look at
the estimated causal effects from your experimental manipulations. In
the words of Coppock (2019), “visualize as you randomize”!
It can sometimes be a challenge to represent the full pattern ofmanipula-
tions from an experiment in a single plot. Below we give some tricks for
maximizing the legible information in your plot. But if you have tried
these and your design plot still looks crowded and messy, that could be
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an indication that your experiment is manipulating too many things at
once!
There are strong (unwritten) conventions about how your confirmatory
analysis is expected to map onto graphical elements, and following these
conventions can minimize confusion. Start with the variables you ma-
nipulate, and make sure they are clearly visible. Conventionally, the
primarymanipulation of interest (e.g. condition) goes on the x-axis, and
the primary measurement of interest (e.g. responses) goes on the y-axis.
Other critical variables of interest (e.g. secondary manipulations, demo-
graphics) are then assigned to “visual variables” (e.g. color, shape, or
size).

CODE

The visualization library ggplot (see Appendix E) makes the mapping of variables in the data to visual data. Part
of a ggplot call is an aes (short for aesthetics) mapping:

aes(
x = ...,
y = ...,
color = ...,
linetype = ...,

)

The aesthetics argument serves as a statement of how data are mapped to “marks” on the plot. This transparent
mapping makes it very easy to explore different plot types by changing that aes() statement, as we’ll see below.

As an example, we will consider the data from Stiller, Goodman, and
Frank (2015) that we explored back in Chapter 7. Because this experi-
ment was a developmental study, the primary independent variable of
interest was the age group of participants (ages 2, 3, or 4). So age gets
assigned to the horizontal (x) axis. The dependent variable is accuracy:
the proportion of trials that a participant made the correct response (out
of 4 trials). So accuracy goes on the vertical (y) axis. Now, we have two
other variables that we might want to show: the condition (experimen-
tal vs. control) and the type of stimuli (houses, beds, and plates of pasta).
When we think about it, though, only condition is central to expos-
ing the design. While we might be interested in whether some types of
stimuli are systematically easier or harder than others, condition is more
central for understanding the logic of the study.
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Figure 15.5: Principles of visual percep-
tion can help guide visualization choices.
Based on Mackinlay (1986; see also
Cleveland and McGill 1984).

CODE

As a reminder, here’s our code for loading the Stiller, Goodman, and Frank (2015) data:

repo <- "https://raw.githubusercontent.com/langcog/experimentology/main/"
sgf <- read_csv(file.path(repo, "data/tidyverse/stiller_scales_data.csv")) |>
mutate(age_group = cut(age, 2:5, include.lowest = TRUE),

condition = condition |>
fct_recode("Experimental" = "Label", "Control" = "No Label"))

sgf_cond_means <- sgf |>
group_by(condition, age_group) |>
summarise(rating = mean(correct))

15.1.2 Principle 2: Facilitate comparison
Now that you’ve mapped elements of your design to the figure’s axes,
how do you decide which graphical elements to display? You might
think: well, in principle, these assignments are all arbitrary anyway. As
long as we clearly label our choices, it shouldn’t matter whether we
use lines, points, bars, colors, textures, or shapes. It’s true that there
are many ways to show the same data. But being thoughtful about our
choices can make it much easier for readers to interpret our findings.
The second principle of statistical visualizations is to facilitate comparison
along the dimensions relevant to our scientific questions. It is easier
for our visual system to accurately compare the location of elements
(e.g. noticing that one point is a certain distance away from another) than
to compare their areas or colors (e.g. noticing that one point is bigger or
brighter than another). Figure 15.5 shows an ordering of visual variables
based on how accurate our visual system is in making comparisons.
For example, we could start by plotting the accuracy of each age group
as colors (Figure 15.6).

Figure 15.6: A first visualization of the
Stiller, Goodman, and Frank (2015) data.
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CODE

To make this (bad) visualization, we used a ggplot function called geom_tile().

ggplot(sgf_cond_means, aes(x = age_group, y = condition, fill = rating)) +
geom_tile() +
labs(x = "Age group", y = "Condition")

geom_tile() is commonly used to make heat maps (https://en.wikipedia.org/wiki/Heat_map): for each value
of some pair of variables (x, y), it shows a color representing the magnitude of a third variable (z). While a heat
map is a silly way to visualize the Stiller, Goodman, and Frank (2015) data, consider using geom_tile() when
you have a pair of continuous variables, each taking a large range of values. In these cases, bar plots and line plots
tend to get extremely cluttered, making it hard to see the relationship between the variables. Heat maps help these
relationships to pop out as clear “hot” and “cold” regions. For example, in Barnett, Griffiths, and Hawkins (2022),
a heatmap was used to show a specific range of parameters where an effect of interest emerged (see Figure 15.7).

Figure 15.7: Heatmap showing a specific range of continuous parameters where an effect emerged. Barnett, Griffiths, and
Hawkins (2022), Figure 3 (licensed under CC BY 4.0).

Or we could plot the accuracy of each age group as sizes/areas (Fig-
ure 15.8).

Figure 15.8: Iterating on the Stiller data
using size.

https://en.wikipedia.org/wiki/Heat_map
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CODE

To make this (bad) visualization, we mapped the rating DV to the size element in our aes() call.

ggplot(sgf_cond_means, aes(x = age_group, y = condition, size = rating)) +
geom_point() +
labs(x = "Age group", y = "Condition")

These plots allow us to see that one condition is (qualitatively) bigger
than others, but it’s hard to tell how much bigger. Additionally, this
way of plotting the data places equal emphasis on age and condition, but
we may instead have in mind particular contrasts, like the change across
ages and how that change differs across conditions. An alternative is to
show six bars: three on the left showing the ‘experimental’ phase and
three on the right showing the ‘control’ phase. Maybe the age groups
then are represented as different colors, as in Figure 15.9.

Figure 15.9: A bar graph of the Stiller
data.

CODE

We make bar plots using the ggplot function geom_col(). By default, it creates “stacked” bar plots, where all
values associated with the same x value (here, condition) get stacked up on top of one another. Stacked bar plots
can be useful if, for example, you’re plotting proportions that sum up to 1, or want to show how some big count is
broken down into subcategories. It’s also common to use geom_area() for this purpose, which connects adjacent
regions. But the more common bar plot used in psychology puts the bars next to one another, or “dodges” them.
To accomplish this, we use the position = "dodge" argument:

ggplot(sgf_cond_means, aes(x = condition, y = rating, fill = age_group)) +
geom_col(position = "dodge") +
labs(x = "Condition", y = "Mean accuracy")
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2 https://www.biostat.wisc.
edu/~kbroman/presentations/
IowaState2013/graphs_combined.pdf

This plot is slightly better: it’s easier to compare the heights of bars than
the ‘blueness’ of squares, and mapping age to color draws our eye to
those contrasts. However, we can do even better by noticing that our
experiment was designed to test an interaction. That statistic of interest
is a difference of differences. To what extent does the developmental
change in performance on the experimental condition different from
developmental change in performance on the control condition? Some
researchers have gotten proficient at reading off interactions from bar
plots, but they also require a complex set of eyemovements. We have to
look at the pattern across the bars on the left, and then jump over to the
bars on the right, and implicitly judge one difference against the other:
the actual statistic isn’t explicitly shown anywhere! What could help
facilitate this comparison? Consider the line plot in Figure 15.10.

Figure 15.10: A line graph of the Stiller
data promotes comparison.

CODE

Using a combination of geom_point() and geom_line():

ggplot(sgf_cond_means, aes(x = age_group, y = rating, color = condition)) +
geom_point() +
geom_line(aes(group = condition)) +
labs(x = "Age group", y = "Mean accuracy")

The interaction contrast we want to interpret is highlighted visually in
this plot. It is much easier to compare the slopes of two lines than men-
tally compute a difference of differences between bars. Here are a few
corollaries of this principle (adapted from a presentation by Karl Bro-
man2).

– It is easier to compare values that are adjacent to one another. This
is especially important when there are many different conditions

https://www.biostat.wisc.edu/~kbroman/presentations/IowaState2013/graphs_combined.pdf
https://www.biostat.wisc.edu/~kbroman/presentations/IowaState2013/graphs_combined.pdf
https://www.biostat.wisc.edu/~kbroman/presentations/IowaState2013/graphs_combined.pdf
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3 Palettes like viridis have been de-
signed to be colorblind-friendly and also
perceptually uniform (i.e. the perceived
difference between 0.1 and 0.2 is approx-
imately the same as the difference be-
tween 0.8 and 0.9).

included on the same plot. If particular sets of conditions are of
theoretical interest, place them close to one another. Otherwise,
sort conditions by a meaningful value (rather than alphabetically,
which is usually the default for plotting software).

– When possible, color-code labels and place them directly next to
data rather than in a separate legend. Legends force readers to
glance back and forth to remember what different colors or lines
mean.

– When making histograms or density plots, it is challenging to
compare distributions when they are placed side-by-side. Instead,
facilitate comparison of distributions by vertically aligning them,
or making them transparent and placed on the same axes.

– If the scale makes it hard to see important differences, consider
transforming the data (e.g. taking the logarithm).

– When making bar plots, be very careful about the vertical y-axis.
A classic “misleading visualization” mistake is to cut off the bot-
tom of the bars by placing the endpoint of the y-axis at some
arbitrary value near the smallest data point. This is misleading
because people interpret bar plots in terms of the relative area of
the bars (i.e. the amount of ink taken up by the bar), not just their
absolute y-values.

– If a key variable from your design is mapped to color, choose
the color scale carefully. For example, if the variable is binary or
categorical, choose visually distinct colors to maximize contrast
(e.g. black, blue, and orange). If the variable is ordinal or contin-
uous, use a color gradient. If there is a natural midpoint (e.g. if
some values are negative and some are positive), consider using a
diverging scale (e.g. different colors at each extreme). Remember
also that a portion of your audience may be color-blind.3

15.1.3 Principle 3: Show the data
Looking at older papers, you may be alarmed to notice how little infor-
mation is contained in the graphs. The worst offenders might show just
two bars, representing average values for two conditions. This kind of
plot adds very little beyond a sentence in the text reporting the means,
but it can also be seriously misleading. It hides real variation in the data,
making a noisy effect based on a few data points look the same as a more
systematic one based on a larger sample. Additionally, it collapses the dis-
tribution of the data, making amulti-modal distribution look the same as
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4 And be sure to tell the reader what the
error bars represent – a 95% confidence
interval? A standard error of the mean?
–without this information, error bars are
hard to interpret (see Depth box below).

a unimodal one. The third principle of modern statistical visualization
is to show the data and visualize variability in some form.
The most minimal form of this principle is to always include error bars.4
Error bars turn a purely descriptive visualization into an inferential one.
They represent a minimal form of uncertainty about the possible statis-
tics that might have been observed, not just the one that was actually
observed. Figure 15.11 shows the Stiller data with (bootstrapped) error
bars.

Figure 15.11: Error bars (95%CIs) added
to the Stiller data line graph.

CODE

A common problem arises when we want to add error bars to a dodged bar plot. Naively, we’d expect we could
just dodge the error bars in the same way we dodged the bars themselves:

geom_col(position = "dodge") +
geom_errorbar(aes(ymin = ci_lower, ymax = ci_upper), position = "dodge")

But this doesn’t work! The rationale is kind of technical, but the width of the error bars is much narrower than the
width of the bars, so we need to manually specify how much to dodge the error bars with the position_dodge()
function:

geom_col(position = position_dodge()) +
geom_errorbar(aes(ymin = ci_lower, ymax = ci_upper),

position = position_dodge(width = 0.9))

This does the trick!

But we can do even better. By overlaying the distribution of the actual
data points on the same plot, we can give the reader information not just
about the statistical inferences but the underlying data supporting those
inferences. In the case of the Stiller, Goodman, and Frank (2015) study,
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5 While participant-level variation is a
good default, the relevant level of aggre-
gation may differ across designs. For ex-
ample, collective behavior studies may
choose to show the data point for each
group. This choice of unit is also impor-
tant when generating error bars: if you
have a small number of participants but
many observations per participant, you
are faced with a choice. You may ei-
ther bootstrap over the flat list of all indi-
vidual observations (yielding very small
error bars), or you may first aggregate
within participants (yielding larger error
bars that account for the fact that re-
peated observations from the same par-
ticipant are not independent).

data points for individual trials are binary (correct or incorrect). It’s
technically possible to show individual responses as dots at 0s and 1s, but
this doesn’t tell us much (we’ll just get a big clump of 0s and a big clump
of 1s). The question to ask yourself when ‘showing the data’ is: what are
the theoreticallymeaningful units of variation in the data? This question
is closely related to our discussion of mixed-effects models in Chapter 7,
when we considered which random effects we should include. Here, a
reader is likely to wonder how much variance was found across different
children in a given age group. To show such variation, we aggregate to
calculate an accuracy score for each participant.5

There are many ways of showing the resulting distribution of
participant-level data. For example, a boxplot shows the median
(a horizontal line) in the center of a box extending from the lower
quartile (25%) to the upper quartile (75%). Lines then extend out to
the biggest and smallest values (excluding outliers, which are shown as
dots). Figure 15.12 gives the boxplots for the Stiller data, which don’t
look that informative – perhaps because of the coarseness of individual
participant averages due to the small number of trials.

Figure 15.12: Boxplot of the Stiller data.

CODE

In ggplot, we can make box plots using geom_boxplot():

geom_boxplot(alpha = 0.8)

A common problem to run into is that geom_boxplot() requires the variable assigned to x to discrete. If you have
discrete levels of a numeric variable (e.g. age groups), make sure you’ve actually converted that variable to a factor.
Otherwise, if it’s still coded as numeric, ggplot will collapse all of the levels together!

It is also common to show the raw data as jittered values with low trans-
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parency. In Figure 15.13, we jitter the points because many participants
have the same numbers (e.g. 50% and if they overlap it is hard to see
how many points there are.

Figure 15.13: Jittered points represent-
ing the data distribution of the Stiller
data.

CODE

Adding the jittered points is simple using geom_jitter(), but we are starting to have a fairly complex plot so
maybe it’s worth taking stock of how we get there.
To plot both condition means and participant means, we need to create two different data frames. Here
sgf_subj_means is a data frame of means for each participant; sgf_subj_ci is a data frame with means and
confidence intervals across participants. For this purpose, we use the tidyboot package and the tidyboot_mean()
function, which gives us bootstrapped 95% confidence intervals for the means.

sgf_subj_means <- sgf |>
group_by(condition, age_group, subid) |>
summarize(rating = mean(correct))

sgf_subj_ci <- sgf_subj_means |>
group_by(condition, age_group) |>
tidyboot::tidyboot_mean(rating) |>
rename(rating = empirical_stat)

ggplot(sgf_subj_ci, aes(x = age_group, y = rating, color = condition)) +
geom_pointrange(aes(ymin = ci_lower, ymax = ci_upper)) +
geom_line(aes(group = condition)) +
geom_jitter(data = sgf_subj_means, alpha = 0.25, width = 0.1, height = .03) +
labs(x = "Age group", y = "Mean accuracy")

The most noteworthy aspect of this code is that the geom_jitter() function doesn’t just take a different aesthetic,
it also takes a different dataframe altogether! Mixing dataframes can be an important tool for creating complex
plots.

Perhaps the format that takes this principle the furthest is the so-called
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“raincloud plot” (Allen et al. 2019) shown in Figure 15.14. A raincloud
plot combines the raw data (“rain”) with a smoothed density (“cloud”)
and a boxplot giving the median and quartiles of the distribution.

Figure 15.14: Raincloud plot of the
Stiller data.

CODE

This raincloud plot requires two additional plotting packages: ggridges for the densities and ggstance for the
horizontal boxplots.

library(ggridges)
library(ggstance)
ggplot(sgf_subj_means, aes(y = age_group, x = rating, color = condition)) +
geom_density_ridges(aes(fill = condition), alpha = 0.2, scale = 0.7,

jittered_points = TRUE, point_alpha = 0.7,
position = position_raincloud(width = 0.05, height = 0.15,

ygap = 0.1)) +
geom_boxploth(width = 0.1, alpha = 0.2, outlier.shape = NA, show.legend = FALSE) +
scale_y_discrete(expand = expansion(mult = c(0.2, 0.4))) +
guides(fill = "none", color = guide_legend(reverse = TRUE)) +
labs(x = "Mean accuracy", y = "Age group", color = "Condition") +
theme(legend.position = "top")
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 DEPTH

Visualizing uncertainty with error bars
One commonmisconception is that error bars are ameasure of variance in the data, like the standard deviation of the
response variable. Instead, they typically represent a measure of precision extracted from the statistical model. In
older papers, for example, it was common to use the standard error of the mean (SEM; see Chapter 6). Remember
that this is not the standard deviation of the data distribution but of the sampling distribution of the mean that is
being estimated. Given the central limit theorem, which tells us that this sampling distribution is asymptotically
normal, it was straightforward to estimate the standard error analytically using the empirical standard deviation of
the data divided by the square root of the sample size: sd(x) / sqrt(length(x)). Error bars based on the SEM
often looked misleadingly small, as they only represent a 68% interval of the sampling distribution and go to zero
quickly as a function of sample size. As a result, it became more common to show the 95% confidence interval
instead: [-1.96 × SEM, 1.96 × SEM].
While these analytic equations remain common, an increasingly popular alternative is to bootstrap confidence in-
tervals (see Depth box in Chapter 6 for more on bootstrapping). The bootstrap is a powerfully generic technique,
especially when you want to show error bars for summary statistics that are more complex than means, where we
do not have such convenient asymptotic guarantees and “closed-form” equations. For example, if you’re working
with a skewed response variable or a dataset with clear outliers, and you want to estimate medians and quartiles.
Or suppose you want to estimate proportions from categorical data, or a more ad hoc statistic like the AUC (area
underneath the curve) in a hierarchical design where it is not clear how to aggregate across items or participants in
a mixed-effects model. Analytic estimators of confidence intervals can in principle be derived for these statistics,
subject to different assumptions, but it is often more transparent and reliable in practice to use the bootstrap. As
long as you can write a code snippet to compute a value from a dataset, you can use the bootstrap.

Figure 15.15: Three different error bars for the Stiller data: bootstrapped 95% confidence intervals (left), standard error of the
mean (middle), and analytically computed confidence intervals (right).

As we can see, the bootstrapped 95% CI looks similar to the analytic 95% CI derived from the standard error, except
the upper and lower limits are slightly asymmetric (reflecting outliers in one direction or another). Of course, the
bootstrap is not a silver bullet and can be abused in particularly small samples. This is because the bootstrap is
fundamentally limited to the sample we run it on. It can be expected to be reasonably accurate if the sample is
reasonably representative of the population. But at the end of the day, as they say, “there’s no such thing as a
free lunch.” In other words, we cannot magically pull more information out of a small sample without making
additional assumptions about the data generating process.
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Figure 15.16: This figure uses a lot to ink
to show three numbers, for a “ddi” of
0.2 (from theWashington Post, 1978; see
Wainer (1984) for other examples).

Figure 15.17: This figure uses compli-
cated 3D ribbons to compare distribu-
tions across four countries (from Roeder
1994). How could the same data have
been presented more legibly?
6 https://yutannihilation.github.
io/allYourFigureAreBelongToUs/
ggthemes/

15.1.1 Principle 4: Maximize information, minimize ink
Now that we have the basic graphical elements in place to show our
design and data, it might seem like the rest is purely a matter of aesthetic
preference, like choosing a pretty color scheme or font. Not so.
There are well-founded principles to make the difference between an
effective visualization and a confusing or obfuscating one. Simply put,
we should try to use the simplest possible presentation of the maximal
amount of information: we should maximize the “data-ink ratio”. To
calculate the amount of information shown, Tufte (1983) suggested
a measure called the “data density index,” the “numbers plotted per
square inch”. The worst offenders have a very low density while also
using a lot of excess ink (e.g., Figure 15.16 and Figure 15.17)
The defaults in modern visualization libraries like ggplot prevent
some of the worst offenses, but are still often suboptimal. For example:
consider whether the visual complexity introduced by the default grey
background and grid lines in Figure 15.18) is justified, or whether a
more minimal theme would be sufficient (see the ggthemes6 package
for a good collection of themes).

Figure 15.18: Standard “gray” themed Stiller figure.

https://yutannihilation.github.io/allYourFigureAreBelongToUs/ggthemes/
https://yutannihilation.github.io/allYourFigureAreBelongToUs/ggthemes/
https://yutannihilation.github.io/allYourFigureAreBelongToUs/ggthemes/
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Figure 15.19 shows a slightly more “styled” version of the same plot
with labels directly on the plot and a lighter-weight theme.

Figure 15.19: Custom themed Stiller fig-
ure with direct labels.

CODE

To produce the plot above, we’ve added a few styling elements including:

– The nice and minimal custom theme, with a larger font size.
– A more accessible color palette (scale_colour_ptol()) from the ggthemes package.
– Direct labels using geom_dl() from the directlabels package.

geom_dl(aes(label = condition), method = list("last.points", dl.trans(x = x + 0.5)))

Here are a few final tips for making good confirmatory visualizations:

– Make sure the font size of all text in your figures is legible and
no smaller than other text in your paper (e.g. 10pt). This change
may require, for example, making the axis breaks sparser, rotating
text, or changing the aspect ratio of the figure.

– Another important tool to keep in your visualization arsenal is the
facet plot. When your experimental design becomes more com-
plex, consider breaking variables out into a grid of facets instead
of packing more and more colors and line-styles onto the same
axis. In other words, while higher information density is typi-
cally a good thing, you want to aim for the sweet spot before it
becomes too dense and confusing. Remember Principle 2. When
there is too much going on in every square inch, it is difficult to
guide your reader’s eye to the comparisons that actually matter,
and spreading it out across facets gives you additional control over
the salient patterns.
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– Sometimes these principles come into conflict, and you may need
to prioritize legibility over, for example, showing all of the data.
For example, suppose there is an outlier orders of magnitude away
from the summary statistics. If the axis limits are zoomed out to
show that point, then most of the plot will be blank space! It is
reasonable to decide that it is not worth compressing the key sta-
tistical question of your visualization into the bottom centimeter
just to show one point. It may suffice to truncate the axes and
note in the caption that a single point was excluded.

– Fix the axis labels! A common mistake is to keep the default
shorthand you used to name variables in your plotting software
instead of more descriptive labels (e.g., “RT” instead of “Reaction
Time”). Use consistent terminology for different manipulations
and measures in the main text and figures. If anything might be
unclear in the figure, explain it in the caption.

– Different audiences may require different levels of detail. Some-
times it is better to collapse over secondary variables (even if they
are included in your statistical models) in order to control the den-
sity of the figure and draw attention to the key question of inter-
est.

15.2 Exploratory visualization
So far in this chapter we have focused on principles of confirmatory data
visualization: how to make production-quality figures that convey the
key pre-registered analyses without hiding sources of variability or mis-
leading readers about the reliability of the results. Yet this is only one
role that data visualization plays when doing science. An equally im-
portant role is called exploratory visualization: the more routine practice
of understanding one’s own data by visualizing it. This role is analo-
gous to the sense of exploratory data analyses discussed in Chapter 11.
We typically do not pre-register exploratory visualizations, and when
we decide to include them in a paper they are typically in the service
of a secondary argument (e.g., checking the robustness of an effect or
validating that some assumption is satisfied).
This kind of visualization plays a ubiquitous role in a researcher’s day-to-
day activities. While confirmatory visualization is primarily audience-
driven and concerned with visual communication, exploratory visual-
ization is first and foremost a “cognitive tool” for the researcher. The
first time we load in a new dataset, we start up a new feedback loop —
we ask ourselves questions and answer them by making visualizations.
These visualizations then raise further questions and are often our best
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tool for debugging our code. In this section, we consider some best
practices for exploratory visualization.

15.2.1 Examining distributional information
The primary advantage of exploratory visualization – the reason it is
uniquely important for data science – is that it gives us access to holistic
information about the distribution of the data, that cannot be captured
in any single summary statistic. The most famous example is known
as “Anscombe’s quartet,” a set of four datasets with identical statistics
(Figure 15.20). They have the samemeans, the same variances, the same
correlation, the same regression line, and the same 𝑅2 value. Yet when
they are plotted, they reveal striking structural differences. The first
looks like a noisy linear relationship – the kind of idealized relationship
we imagine when we imagine a regression line. But the second is a
perfect quadratic arc, the third is a perfectly noiseless line with a single
outlier, and the fourth is nearly categorical: every observation except
one shares exactly the same x-value.

Figure 15.20: Anscombe’s quartet
(Anscombe 1973).

If our analyses are supposed to help us distinguish between different
data-generating processes, corresponding to different psychological the-
ories, it is clear that these four datasets would correspond to dramati-
cally different theories even though they share the same statistics. Of
course, there are arbitrarily many datasets with the same statistics, and
most of these differences don’t matter (this is why they are called “sum-
mary” statistics, after all!). Figure 15.21 and Table 15.1 show just how
bad things can get when we rely on summary statistics. When we op-
erationalize a theory’s predictions in terms of a single statistic (e.g., a
difference between groups or a regression coefficient) we can lose track
of everything else that may be going on. Good visualizations force us
to zoom out and take in the bigger picture.
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Figure 15.21: Originally inspired by
the Datasaurus figure constructed by
@albertocairo on Twitter (Cairo
2016) using the DrawMyData
tool (http://robertgrantstats.co.uk/
drawmydata.html), we can construct
an arbitrary number of different graphs
with exactly the same statistics (Matejka
and Fitzmaurice 2017; Murray and
Wilson 2021), such as the Datasaurus
Dozen (Matejka and Fitzmaurice 2017).

Table 15.1: Summary statistics for each dataset in theDatasaurusDozen (Matejka 2017).

dataset mean_x mean_y sd_x sd_y cor_xy
away 54.3 47.8 16.8 26.9 -0.064
bullseye 54.3 47.8 16.8 26.9 -0.069
circle 54.3 47.8 16.8 26.9 -0.068
dino 54.3 47.8 16.8 26.9 -0.064
dots 54.3 47.8 16.8 26.9 -0.060
h_lines 54.3 47.8 16.8 26.9 -0.062
high_lines 54.3 47.8 16.8 26.9 -0.069
slant_down 54.3 47.8 16.8 26.9 -0.069
slant_up 54.3 47.8 16.8 26.9 -0.069
star 54.3 47.8 16.8 26.9 -0.063
v_lines 54.3 47.8 16.8 26.9 -0.069
wide_lines 54.3 47.8 16.8 26.9 -0.067
x_shape 54.3 47.8 16.8 26.9 -0.066

http://robertgrantstats.co.uk/drawmydata.html
http://robertgrantstats.co.uk/drawmydata.html
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 ACCIDENT REPORT

[Distributional] gorillas in our midst.
Many data scientists don’t bother checking what their data looks like before proceeding to test specific hypotheses.
Yanai and Lercher (2020) cleverly designed an artificial dataset for their students to test for such oversight. Each row
of the dataset contained an individual’s body mass index (BMI) and the number of steps they walked on a given
day. While the spreadsheet looked innocuous, the data was constructed such that simply plotting the raw data
revealed a picture of a gorilla. One group of 19 students was given an explicit set of hypotheses to test (e.g. about
the relationship between BMI and steps). Fourteen of these students failed to notice a gorilla, suggesting that they
evaluated these hypotheses without ever visualizing their data. Another group of 14 students were simply asked
what, if anything, they could conclude (without being given explicit hypotheses). More of these students apparently
made the visualization, but five of them still failed to notice the gorilla (Figure 15.22)!

Figure 15.22: A dataset constructed by Yanai and Lercher (2020) which revealed a picture of a gorilla when the raw data were
plotted.

While it may not be surprising that a group of students would take the shortest path to completing their assignment,
similar concerns have been raised in much more serious cases concerning how experienced researchers could fail to
notice obviously fraudulent data. For example, when the Datacolada bloggers -Datacolada (2021) made a simple
histogram of the car mileage data reported in Shu et al. (2012; released publicly by Kristal et al. 2020), they were
immediately able to observe that it followed a perfectly uniform distribution, truncated at exactly 50,000 miles
(Figure 15.23). Given a little thought, this pattern should be extremely puzzling. Over a given period of time,
we would typically expect something more bell-shaped: a small number of people will drive very little (e.g., 1000
miles), a small number of people will drive a lot (e.g., 50,000 miles), and most people will fall between these tails.
So it is highly surprising to find exactly the same number of drivers in every mileage bin. While further specialized
analyses revealed additional evidence of fraud (e.g. based on patterns of rounding and pairs of duplicated data points),
this humble histogram was already enough to set off alarm bells. A recurring regret raised by the co-authors of this
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paper is that they never thought to make this visualization before reporting their statistical tests.

Figure 15.23: A suspiciously uniform distribution abruptly cutting off at 50k miles. Ring the alarm!

Our data are always messier than we expect. There might be a bug in our coding scheme, a column might be
mislabeled, or might contain a range of values that we didn’t expect. Maybe our design wasn’t perfectly balanced,
or something went wrong with a particular participant’s keyboard presses. Most of the time, it’s not tractable to
manually scroll through our raw data looking for such problems. Visualization is our first line of defense for the
all-important process of running “data diagnostics.” If there is a weird artifact in our data, it will pop out if we just
make the right visualizations.

15.2.1 Data diagnostics
So which visualizations should we start with? The best practice is to
always start by making histograms of the raw data. As an example, let’s
consider the rich and interesting dataset shared by Blake, McAuliffe,
and colleagues (2015) in their article “Ontogeny of fairness in seven
societies.” This article studies the emergence of children’s reasoning
about fairness – both when it benefits them and when it harms them –
across cultures.
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CODE

If you want to follow along with this example at home, you can load the data from our repository!

repo <- "https://raw.githubusercontent.com/langcog/experimentology/main/"
fairness_raw <- read_csv(file.path(repo, "data/viz/ontogeny_of_fairness.csv"))

fairness <- fairness_raw |>
mutate(trial_num = trial |> str_remove("t") |> as.numeric(),

trial_type = eq.uneq |> fct_recode("Equal" = "E", "Unequal" = "U"),
condition = condition |> fct_recode("Advantageous" = "AI",

"Disadvantageous" = "DI"),
age = floor(actor.age.years),
reject = decision == "reject") |>

select(subj_id = actor.id, age, country, condition, trial_num, trial_type, reject) |>
arrange(country, condition, subj_id, trial_num)

In this study, pairs of children played the “inequity game”: they sat
across from one another and were given a particular allocation of snacks.
On some trials, each participant was allocated the same amount (Equal
trials) and on some trials they were allocated different amounts (Un-
equal trials). One participant was chosen to be the “actor” and got to
choose whether to accept or reject the allocation: in the case of rejec-
tion, neither participant got anything. The critical manipulation was
between two forms of inequity. Some pairs were assigned to the Dis-
advantageous condition, where the actor was allocated less than their
partner on Unequal trials (e.g. 1 vs. 4). Others were assigned to the Ad-
vantageous condition, where they were allocated more (e.g. 4 vs. 1).
The confirmatory design plot for this study would focus on contrast-
ing developmental trajectories for Advantageous vs. Disadvantageous
inequality. However, this is a complex, multivariate dataset, including
866 pairs from different age groups and different testing sites across the
world which used subtly different protocols. How might we go about
the process of exploratory visualization for this dataset?

15.2.2 Plot data collection details
Let’s start by getting a handle on some of the basic sample character-
istics. For example, how many participants were in each age bin (Fig-
ure 15.24)?
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Figure 15.24: Participants by age in the
Blake data.

CODE

Exploratory histograms are often a combination of an aggregation step and a plotting step. In the aggregation step,
we make use of the convenience count() function, which gives the number (n) of rows in a particular grouping.
Here we count() twice in order to get first one row per participant and then count the number of participants
within each age group.

fairness_by_age <- fairness |>
count(age, subj_id) |>
count(age)

And then we plot using ggplot():

ggplot(fairness_by_age, aes(x = age, y = n)) +
geom_col() +
xlim(0, 18) +
labs(x = "Age (years)", y = "Count")

An alternative (perhaps more elegant) workflow here would be to use a histogram:

fairness_by_age <- fairness |>
count(age, subj_id)

ggplot(fairness_by_age, aes(x = age)) +
geom_histogram(binwidth = 1) +
labs(x = "Age (years)", y = "Count")

Histograms are intended by ggplot to be for continuous data, however, and so they don’t give the discrete bars
that our earlier workflow did.
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How many participants were included from each country (Fig-
ure 15.25)?

Figure 15.25: Participants by country in
the Blake data.

CODE

Here we are going to make things even terser and use a pipe chain that includes the ggplot() call, just so we are
writing only a single call to produce our plot. It’s up to you whether you think this enhances the readability of
your code or decreases it. We find that it’s sometimes useful when you don’t plan on keeping the intermediate
data frame for any other use than plotting.

fairness |>
count(country, subj_id) |>
count(country) |>
mutate(country = fct_reorder(country, -n)) |>
ggplot(aes(x = country, y = n)) +

geom_col() +
labs(x = "Country", y = "Count")

If you use this technique, be careful to use pipe (|> or %>%) between function calls but use (+) between ggplot
layers!
The only other trick to point out here is that we use the fct_reorder() call to order the levels of the country
factor in descending order. This function is found in the very useful forcats package of the tidyverse, which
contains all sorts of functions for working with factors.
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Are ages roughly similar across each country (Figure 15.26)?

Figure 15.26: Age distribution across
countries in the Blake data.

CODE

This next plot simply combines the grouping factors of each of the last two plots, and uses facet_wrap() to show
a separate histogram by country:

fairness |>
count(country, age, subj_id) |>
count(country, age) |>
mutate(country = fct_reorder(country, -n)) |>
ggplot(aes(x = age, y = n)) +

facet_wrap(vars(country), ncol = 4) +
geom_col() +
xlim(0, 18) +
labs(x = "Age (years)", y = "Count")

These exploratory visualizations help us read off some descriptive prop-
erties of the sample. For example, we can see that age ranges differ
somewhat across sites: the maximum age is 11 in India but 15 in Mex-
ico. We can also see that age groups are fairly imbalanced: in Canada,
there are 18 11-year-olds but only 5 6-year-olds.
None of these properties are problematic, but seeing them gives us a
degree of awareness that could shape our downstream analytic decisions.
For example, if we did not appropriately model random effects, our
estimates would be dominated by the countries with larger sample sizes.
And if we were planning to compare specific groups of 6-year-olds (for
some reason), this analysis would be underpowered.
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15.2.3 Explorating distributions
Now that we have a handle on the sample, let’s get a sense of the depen-
dent variable: the participant’s decision to accept or reject the allocation.
Before we start taking means, let’s look at how the “rejection rate” vari-
able is distributed. We’ll aggregate at the participant level, and check
the frequency of different rejection rates, overall (Figure 15.27).

Figure 15.27: Rejection rates in the
Blake data.

CODE

Rejection rate is a continuous variable, so we switch to using a histogram in this case, choosing .05 as a reasonable
bin width to see the distribution.

fairness_by_subj <- fairness |>
filter(!is.na(trial_type)) |>
group_by(subj_id) |>
summarise(mean_reject = mean(reject, na.rm = TRUE))

ggplot(fairness_by_subj, aes(x = mean_reject)) +
geom_histogram(binwidth = .05) +
labs(x = "Proportion of offers rejected", y = "Count")

We notice that many participants (27%) never reject in the entire exper-
iment. This kind of “zero-inflated” distribution is not uncommon in
psychology, and may warrant special consideration when designing the
statistical model. We also notice that there is clumping around certain
values. This clumping leads us to check how many trials each partici-
pant is completing (Figure 15.28).
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Figure 15.28: Trials per participant in
the Blake data.

CODE

This histogram is very similar to the ones above; however, we now use count() twice, first getting the trial counts
for each participant and then counting how many times each count occurs overall!

fairness |>
filter(!is.na(trial_type)) |>
count(subj_id) |>
count(n) |>
ggplot(aes(x = n, y = nn)) +

geom_col() +
labs(x = "Number of trials", y = "Count of participants")

There’s some variation here: most participants completed 17 trials, but
some participants completed 8 trials, and a small number of participants
have 14 or 15. Given the logistical complexity of large multi-site stud-
ies, it is common to have some changes in experimental protocol across
data collection. Indeed, looking at the supplement for the study, we
see that while India and Peru had 12 trials, additional trials were added
at the other sites. In a design where the number of trials was carefully
controlled, seeing unexpected numbers here (like the 14 or 15 trial bins)
are clues that something else may be going on in the data. In this case, it
was a small number of trials with missing data. More generally, seeing
this kind of signal in a visualization of our own data typically leads us
to look up the participant IDs in these bins and manually inspect their
data to see what might be going on.
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15.2.4 Hypothesis-driven exploration
Finally, we can make a few versions of the design plot that are broken
out by different variables. Let’s start by just looking at the data from the
largest site (Figure 15.29).

Figure 15.29: Rejection rates in the US
data from Blake, plotted by age.

Figure 15.29 is not a figure we’d put in a paper, but it helps us get a sense
of the pattern in the data. There appears to be an age trend that’s specific
to the Unequal trials, with rejection rates rising over time (compared to
roughly even or decreasing rates in the Equal trials). Meanwhile, rejec-
tion rates for the Disadvantageous group also seem slightly higher than
those in the Advantageous group.
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7 Binning data is a trick that we often
use for reducing complexity in a plot
when data are noisy. It should be used
with care, however, since different bin-
ning decisions can sometimes lead to dif-
ferent conclusions. Here we tried sev-
eral binning intervals and decided that
two-year age bins showed the underly-
ing trends pretty well.

CODE

Here, we are using geom_smooth() to overlay regression trends over the raw data. geom_smooth() takes a number
of different options corresponding to different smoothing techniques. Non-parametric smoothing can be a good
choice for exploratory visualizations if you have a lot of data and want to make minimal assumptions about the
form of the trend.
Here, however, we show the linear regression trend, geom_smooth(method = "lm"), which better corresponds to
the predictions of the study and the statistical model being used (see Chapter 7). Other regression forms can be spec-
ified with the formula argument. For example, we could show quadratic smoothing with geom_smooth(method
= "lm", formula = y ~ poly(x, 2)). The form of smoothing you use may differ across exploratory and con-
firmatory visualizations. In a confirmatory visualization — if you are going to include a smoothing curve — it is
typically best to use the one specified by your statistical model, as the slopes will correspond to the inferences being
testing.
We begin by making a summary dataset:

fairness_by_age <- fairness |>
filter(!is.na(reject)) |>
group_by(country, trial_type, condition, age, subj_id) |>
summarise(mean_reject_subj = mean(reject, na.rm = TRUE)) |>
group_by(country, trial_type, condition, age) |>
summarise(mean_reject_age = mean(mean_reject_subj, na.rm = TRUE),

n_subj = n()) |>
ungroup()

Then we can create the visualization:

fairness_by_age |> filter(country == "US") |>
ggplot(aes(x = age, y = mean_reject_age, color = condition)) +

facet_grid(vars(trial_type), vars(condition)) +
geom_smooth(method = "lm", se = FALSE) +
geom_point(aes(size = n_subj), alpha = .5) +
ylim(c(0, 1)) +
labs(x = "Age (years)", y = "Proportion of offers rejected",

color = "Condition", size = "N subjects") +
theme(legend.position = "bottom", legend.box = "vertical")

We often find it convenient to filter the summary dataset in the plotting call, so that we can reuse it again.

Now let’s re-bin the data into two-year age groups so that individual
point estimates are a bit more reliable, and add the other countries back
in.7
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Figure 15.30: Rejection rates by age for
all data in the Blake dataset.

Figure 15.30 is now looking much closer to a quick-and-dirty version
of a “design plot” we might include in a paper. The DV (rejection rate)
is on the y-axis, and the primary variable of interest (age) is on the x-
axis. Other elements of the design (country and trial type) are mapped
to color and facets, respectively.

CODE

Despite the difference between the plot above and this one, the code to produce them is actually very similar. The
only difference is the creation of the binned variable and a slight shift of aesthetic and faceting variables.

fairness_by_age_binned <- fairness |>
filter(!is.na(reject)) |>
mutate(age_binned = floor(age / 2) * 2) |>
group_by(country, trial_type, condition, age_binned, subj_id) |>
summarise(mean_reject_subj = mean(reject, na.rm = TRUE)) |>
group_by(country, trial_type, condition, age_binned) |>
summarise(mean_reject_age = mean(mean_reject_subj, na.rm = TRUE),

n = n()) |>
ungroup()

ggplot(fairness_by_age_binned,
aes(x = age_binned, y = mean_reject_age, color = condition)) +

facet_grid(vars(trial_type), vars(country)) +
geom_smooth(method = "lm", se = FALSE, aes(weight=n)) +
geom_point(alpha = .5, aes(size = n)) +
scale_x_continuous(breaks = seq(4, 12, 4), limits = c(3,13)) +
scale_y_continuous(limits = c(0, 1), breaks = c(0, .5, 1)) +
labs(x = "Age (years)", y = "Proportion of offers rejected",

color = "Condition", size = "N subjects") +
theme(legend.position = "bottom")
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15.2.5 Visualization as debugging
The point of exploratory visualization is to converge toward a better
understanding of what’s going on in your data. As you iterate through
different exploratory visualizations, stay vigilant! Think about what you
expect to see before making the plot, then ask yourself whether you
got what you expected. You can think of this workflow as a form of
“visual debugging”. You might notice a data point with an impossible
value, such as a proportion greater than 1 or a reaction time less than 0.
Or you might notice weird clusters or striations, which might indicate
heterogeneity in data entry (perhaps different coders used slightly dif-
ferent rubrics or rounded in different ways). You might notice that an
attribute is missing for some values, and trace it back to a bug reading in
the data or merging data frames (maybe there was a missing comma in
our csv file). If you see anything that looks weird, track it down until
you understand why it’s happening. Bugs that are subtle and invisible
in other parts of the analysis pipeline will often pop out as red flags in
visualizations.

15.3 Chapter summary: Visualization
This chapter has given a short review of the principles of data visual-
ization, especially focusing on the needs of experimental psychology,
which are often quite different than those of other fields. We partic-
ularly focused on the need to make visualization part of the experi-
menter’s analytic workflow. Picking up the idea of a “default model”
from Chapter 7, we discussed a default “design plot” that reflects the
key choices made in the experimental design. Within this framework,
we then discussed different visualizations of distribution and variability
that better align our graphics with the principles of measurement and
attention to raw data that we have been advocating throughout.

DISCUSSION QUESTIONS

1. Choose a recent piece of research that you’ve heard about and try to sketch the “design plot” with pencil and
paper. What does and doesn’t work? How does your sketch differ from the visualizations in the paper?

2. The “design plot” idea that we’ve discussed here can run into problems when an experimental design is too
complex to show on a single plot. Imagine you had data from a trial of attention deficit hyperactivity disorder
(ADHD) treatment that manipulated both whether a medication was given and whether patients received ther-
apy in a crossed design. The researchers measured two different outcomes: parent report symptom severity and
teacher report symptom severity in four different time-points (baseline, 3 months, 6 months, and 9 months).
How could you show the data from such an experiment in a transparent way?
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READINGS

There are many good introductions to data visualization. Here are two social-science focused books whose advice
we agree with and that also contain a lot of practical information and helpful R code for the same packages we use
here.

– Healy, K. (2019). Data Visualization: A Practical Introduction. Princeton University Press. Princeton University
Press. Available free online at https://socviz.co.

– Wilke, C. O. (2019). Fundamentals of Data Visualization. O’Reilly Media. Available free online at https://
clauswilke.com/dataviz/.

For a more classical treatment, see:

– Tukey, J. W. (1977). Exploratory data analysis. Pearson.
– Tufte, E. R. (1997). The Visual Display of Quantitative Information. Graphics Press.
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1 We’ll primarily be using Cohen’s
𝑑, the standardized difference between
means, which we introduced in Chap-
ter 5. There are many more varieties of
effect size available, butwe focus here on
𝑑 because it’s common and easy to rea-
son about in the context of the statisti-
cal tools we introduced in the earlier sec-
tions of the book.

16 META-ANALYSIS

🍏 LEARNING GOALS

– Discuss the benefits of synthesizing evidence across studies
– Conduct a simple fixed- or random-effects meta analysis
– Reason about the role of within- and across-study biases in meta-analysis

Throughout this book, we have focused on how to design individual
experiments that maximize measurement precision and minimize bias.
But even when we do our best to get a precise, unbiased estimate in an
individual experiment, one study can never be definitive. Variability in
participant demographics, stimuli, and experimental methodsmay limit
the generalizability of our findings. Additionally, even well-powered
individual studies have some amount of statistical error, limiting their
precision. Synthesizing evidence across studies is critical for developing
a balanced and appropriately evolving view of the overall evidence on
an effect of interest and for understanding sources of variation in the
effect.
Synthesizing evidence rigorously takes more than putting a search term
into Google Scholar, downloading articles that look topical or inter-
esting, and qualitatively summarizing your impressions of those stud-
ies. While this ad-hoc method can be an essential first step in perform-
ing a literature review (Grant and Booth 2009), it is not systematic and
doesn’t provide a quantitative summary of a particular effect. Further,
it doesn’t tell you anything about potential biases in the literature – for
example, a bias for the publication of positive effects.
To address these issues, a more systematic, quantitative review of the
literature is often more informative. This chapter focuses on a specific
type of quantitative review calledmeta-analysis: a method for combin-
ing effect sizes across different studies. (If you need a refresher on effect
size, see Chapter 5, where we introduce the concept).1 We incude a
chapter on meta-analysis in Experimentology because we believe it’s an
important tool that can focus experimental researchers on issues of MEA-
SUREMENT PRECISION and BIAS REDUCTION, two of our key themes.
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2 Given the billions of hotel bookings
worldwide every year, even a small ef-
fect might have lead to a substantial en-
vironmental impact!

By combining information from multiple studies, meta-analysis often
provides more precise estimates of an effect size than any single study.
In addition, meta-analysis also allows the researcher to look at the extent
to which an effect varies across studies. If an effect does vary across stud-
ies, meta-analysis also can be used to test whether certain study charac-
teristics systematically produce different results (e.g., whether an effect
is larger in certain populations).

CASE STUDY

Towel reuse by hotel guests
Imagine you are staying in a hotel and you have just taken a shower. Do you throw the towels on the floor or hang
them back up again? In a widely-cited study on the power of social norms, Goldstein, Cialdini, and Griskevicius
(2008)manipulatedwhether a sign encouraging guests to reuse towels focused on environmental impacts (e.g., “help
reduce water use”) or social norms (e.g., “most guests re-use their towels”). Across two studies, they found that
guests were significantly more likely to reuse their towels after receiving the social norm message (Study 1: odds
ratio [OR] = 1.46, 95% CI [1.00, 2.16], 𝑝 = .05; Study 2: OR = 1.35, 95% CI [1.04, 1.77], 𝑝 = .03).
However, five subsequent studies by other researchers did not find significant evidence that social norm messaging
increased towel reuse. (ORs ranged from 0.22 to 1.34, and no hypothesis-consistent 𝑝-value was less than .05).
This caused many researchers to wonder if there is any effect at all. To examine this question, Scheibehenne, Jamil,
and Wagenmakers (2016) statistically combined evidence across the studies via meta-analysis. This meta-analysis
indicated that using social normmessages did significantly increase hotel towel reuse, on average (OR= 1.26, 95%CI
[1.07, 1.46], 𝑝 < .005). This case study demonstrates an important strength of meta-analysis: by pooling evidence
from multiple studies, meta-analysis can generate more powerful insights than any one study alone. We will also
see how meta-analysis can be used to assess variability in effects across studies.

Meta-analysis often teaches us something about a body of evidence that
we do not intuitively grasp when we casually read through a bunch of
articles. In the above case study, merely reading the individual studies
might give the impression that social norm messages do not increase
hotel towel re-use. But meta-analysis indicated that the average effect
is beneficial, although there might be substantial variation in effect sizes
across studies.2

16.1 The basics of evidence synthesis
As we explore the details of conducting a meta-analysis, we’ll turn to
another running example: a meta-analysis of studies investigating the
“contact hypothesis” on intergroup relations.
According to the contact hypothesis, prejudice towards members of mi-
nority groups can be reduced through intergroup contact interventions,
in which members of majority and minority groups work together to
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3 This book will not cover the process of
conducting a systematic literature search
and extracting effect sizes, but these top-
ics are critical to understand if you plan
to conduct a meta-analysis or other evi-
dence synthesis. Our experience is that
extracting effect sizes from papers with
inconsistent reporting standards can be
especially tricky, so it can be helpful
to talk to someone with experience in
meta-analysis to get advice about this.
4 For example, if the outcome variable is
continuous, we could estimate Cohen’s
𝑑 from group means and standard devia-
tions reported in the paper, evenwithout
having access to raw data.

5 You can ignore for now the column
of percentages and the final line, “RE
Model”; we will return to these later.

pursue a common goal (Allport, Clark, and Pettigrew 1954). To ag-
gregate the evidence on the contact hypothesis, Paluck, Green, and
Green (2019) meta-analyzed studies that tested the effects of random-
ized intergroup contact interventions on long-term prejudice-related
outcomes.
Using a systematic literature search, Paluck, Green, and Green (2019)
searched for all papers that tested these effects and then extracted effect
size estimates from each paper.3 Because not every paper reports stan-
dardized effect sizes – or even means and standard deviations for every
group – this process can often involve scraping information from plots,
tables, and statistical tests to try to reconstruct effect sizes.4

Following best practices for meta-analysis (where there are almost never
privacy concerns to worry about), Paluck, Green, and Green (2019)
shared their data openly. The first few lines are shown in Table 16.1.
We’ll use these data as our running example throughout.

Table 16.1: First few lines of extracted effect sizes (d) and their variances (var_d) in the
Paluck, Green, and Green (2019) meta-analysis.

name pub_date target n_total d var_d
Boisjoly 06 B 2006 race 1243 0.030 0.006
Sorensen 10 2010 race 597 0.302 0.007
Scacco 18 2018 religion 474 0.000 0.010
Finseraas 2017 2017 foreigners 577 0.000 0.011
Sheare 74 1974 disability 400 1.059 0.011
Barnhardt 09 2009 religion 312 0.395 0.015

As we’ve seen throughout this book, visualizing data before and after
analysis helps benchmark and check our intuitions about the formal sta-
tistical results. In a meta-analysis, a common way to plot effect sizes
is the forest plot, which depicts individual studies’ estimates and con-
fidence intervals.5 In the forest plot in Figure 16.1, the larger squares
correspond to more precise studies; notice how much narrower their
confidence intervals are than the confidence intervals of less precise stud-
ies.
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Figure 16.1: Forest plot for Paluck,
Green, and Green (2019) meta-analysis.
Studies are ordered from smallest to
largest standard error.

CODE

In this chapter, we use the wonderful metafor package (Viechtbauer 2010). With this package, you must first fit
your meta-analytic model. But once you’ve fit your model mod, you can simply call forest(mod) to create a plot
like the one above.

16.1.1 How not to synthesize evidence
Many people’s first instinct in evidence synthesis is to count how many
studies supported versus did not support the hypothesis under investiga-
tion. This technique usually amounts to counting the number of studies
with “significant” 𝑝-values, since – for better or for worse – “signif-
icance” is largely what drives the take-home conclusions researchers
report (McShane and Gal 2017; Nelson, Rosenthal, and Rosnow 1986).
In meta-analysis, we call this practice of counting the number of signif-
icant 𝑝-values vote-counting (Borenstein et al. 2021). For example, in
the Paluck, Green, and Green (2019) meta-analysis, almost all studies
had a positive effect size, but only 12 of 27 were significant. So, based
on this vote-count, we would have the impression that most studies do
not support the contact hypothesis.
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Many qualitative literature reviews use this vote-counting approach, al-
though often not explicitly. Despite its intuitive appeal, vote-counting
can be very misleading because it characterizes evidence solely in terms
of dichotomized 𝑝-values, while entirely ignoring effect sizes. In Chap-
ter 3, we saw how fetishizing statistical significance canmislead us when
we consider individual studies. These problems also apply when consid-
ering multiple studies.
For example, small studies may consistently produce non-significant ef-
fects due to their limited power. But when many such studies are com-
bined in a meta-analysis, the meta-analysis may provide strong evidence
of a positive average effect. Inversely, many studies might have statisti-
cally significant effects, but if their effect sizes are small, then a meta-
analysis might indicate that the average effect size is too small to be
practically meaningful. In these cases, vote-counting based on statistical
significance can lead us badly astray (Borenstein et al. 2021). To avoid
these pitfalls, meta-analysis combines the effect size estimates from each
study (not just their 𝑝-values), weighting them in a principled way.

16.1.2 Fixed-effects meta-analysis
If vote-counting is a bad idea, how should we combine results across
studies? Another intuitive approach might be to average effect sizes
from each study. For example, in Paluck et al.’s meta-analysis, the mean
of the studies’ effect size estimates is 0.44. This averaging approach is a
step in the right direction, but it has an important limitation: averaging
effect size estimates gives equal weight to each study. A small study
(e.g., Clunies-Ross and O’Meara 1989 with N=30) contributes as much
to the mean effect size as a large study (e.g., Boisjoly et al. 2006 with
N=1243). Larger studies provide more precise estimates of effect sizes
than small studies, so weighting all studies equally is not ideal. Instead,
larger studies should carry more weight in the analysis.
To address this issue, fixed-effects meta-analysis uses a weighted aver-
age approach. Larger, more precise studies are given more weight in the
calculation of the overall effect size. Specifically, each study is weighted
by the inverse of its variance (i.e., the inverse of its squared standard er-
ror). This makes sense because larger, more precise studies have smaller
variances, and thus get more weight in the analysis.
In general terms, the fixed-effect pooled estimate is:

̂𝜇 = ∑𝑘
𝑖=1 𝑤𝑖 ̂𝜃𝑖

∑𝑘
𝑖=1 𝑤𝑖
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6 If you are curious, the standard error of
the fixed-effect 𝜇 is 1

∑𝑘
𝑖=1 𝑤𝑖

. This stan-
dard error can be used to construct a con-
fidence interval or 𝑝-value, as described
in Chapter 6.

where 𝑘 is the number of studies, ̂𝜃𝑖 is the point estimate of the 𝑖𝑡ℎ study,
and 𝑤𝑖 = 1/𝜎̂2

𝑖 is study 𝑖’s weight in the analysis (i.e., the inverse of its
variance).6

Using the fixed-effects formula, we can estimate that the overall effect
size in Paluck et al.’s meta-analysis is a standardizedmean difference of ̂𝜇
= 0.28; 95% confidence interval [0.23, 0.34]; 𝑝 < .001. Because Cohen’s
𝑑 is our effect size index, this estimate would suggest that intergroup
contact decreased prejudice by 0.28 standard deviations.

CODE

Fitting meta-analytic models in metafor is quite simple. For example, for the fixed effects model above, we simply
ran the rma() function and specified that we wanted a fixed effects analysis.

fe_model <- rma(yi = d, vi = var_d, data = paluck, method = "FE")

Then summary(fe_model) gives us the relevant information about the fitted model.

16.1.3 Limitations of fixed-effects meta-analysis
One of the limitations of fixed-effect meta-analysis is that it assumes
that the true effect size is, well, fixed! In other words, fixed-effect meta-
analysis assumes that there is a single effect size that all studies are esti-
mating. This is a stringent assumption. It’s easy to imagine that it could
be violated. Imagine, for example, that intergroup contact decreased
prejudice when the group succeeded at its joint goal, but increased prej-
udice when the group failed. If we meta-analyzed two studies under
these conditions – one in which intergroup contact substantially in-
creased prejudice, and one in which intergroup contact substantially
decreased prejudice – it might appear that the true effect of intergroup
contact was close to zero, when in fact both of themeta-analyzed studies
had large effects.
In Paluck et al.’s meta-analysis, studies differed in several ways that
could lead to different true effects. For example, some studies recruited
adult participants while others recruited children. If intergroup contact
is more or less effective for adults versus children, then it is misleading
to talk about a single (i.e., “fixed”) intergroup contact effect. Instead,
we would say that the effects of intergroup contact vary across studies,
an idea called heterogeneity.
Does the concept of heterogeneity remind you of anything from when
we analyzed repeated-measures data in Chapter 7 on models? Recall
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7 Technically, other specifications of
random-effects meta-analysis are possi-
ble. For example, robust variance esti-
mation does not require making assump-
tions about the distribution of effects
across studies (Hedges, Tipton, and John-
son 2010). These approaches also have
other substantial advantages, like their
ability to handle effects that are clustered
[e.g., because some papers contribute
multiple estimates; Hedges, Tipton, and
Johnson (2010); Pustejovsky and Tipton
(2021)] and their ability to provide bet-
ter inference in meta-analyses with rel-
atively few studies (Tipton 2015). For
these reasons, we often use these robust
methods.

that, with repeated-measures data, we had to deal with the possibility
of heterogeneity across participants – and of the ways we did so was by
introducing participant-level random intercepts to our regressionmodel.
It turns out that we can do a similar thing in meta-analysis to deal with
heterogeneity across studies.

16.1.4 Random-effects meta-analysis
While fixed-effect meta-analysis essentially assumes that all studies
in the meta-analysis have the same population effect size, 𝜇, random-
effects meta-analysis instead assumes that study effects come from
a normal distribution with mean 𝜇 and standard deviation 𝜏 .7 The
larger the standard deviation, 𝜏 , the more heterogeneous the effects are
across studies. A random-effects model then estimates both 𝜇 and 𝜏 ,
for example by maximum likelihood (DerSimonian and Laird 1986;
Brockwell and Gordon 2001).
Like fixed-effect meta-analysis, the random-effects estimate of ̂𝜇 is still
a weighted average of studies’ effect size estimates:

̂𝜇 = ∑𝑘
𝑖=1 𝑤𝑖 ̂𝜃𝑖

∑𝑘
𝑖=1 𝑤𝑖

However, in random-effects meta-analysis, the inverse-variance
weights now incorporate heterogeneity: 𝑤𝑖 = 1/ ( ̂𝜏2 + 𝜎̂2

𝑖 ). Where
before we had one term in our weights, now we have two. That
is because these weights represent the inverse of studies’ marginal
variances, taking into account both statistical error due to their finite
sample sizes (𝜎̂2

𝑖 as before) and also genuine effect heterogeneity ( ̂𝜏2).
Conducting a random-effects meta-analysis of Paluck et al.’s dataset
yields ̂𝜇 = 0.4; 95% confidence interval [0.2, 0.61]; 𝑝 < .001. That
is, on average across studies, intergroup contact was associated with a de-
crease in prejudice of 0.4 standard deviations, substantially larger than
the estimate from the fixed effects model. This meta-analytic estimate
is shown as the bottom line of Figure 16.1.

CODE

Fitting a random effects model requires only a small change to the methods argument of rma(). (We also include
the knha flag that adds a correction to the computation of standard errors and p-values).

re_model <- rma(yi = d, vi = var_d, data = paluck, method = "REML", knha = TRUE)
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Figure 16.2: Estimated distribution of
population effects from random-effects
meta-analysis of Paluck et. al’s dataset
(heavy red curve) and estimated density
of studies’ point estimates (thin black
curve).

8 One common approach to investi-
gating moderators in meta-analysis is
meta-regression, in which moderators
are included as covariates in a random-
effects meta-analysis model (Thompson
and Higgins 2002). As in standard re-
gression, coefficients can then be esti-
mated for each moderator, representing
the mean difference in population effect
between studies with versus without the
moderator.

Based on the random effects model, intergroup contact effects appear
to differ across studies. Paluck et al. estimated that the standard devi-
ation of effects across studies was ̂𝜏 = 0.44 ; 95% confidence interval
[0.25, 0.57]. This estimate indicates a substantial amount of heterogene-
ity! To visualize these results, we can plot the estimated density of the
population effects, which is just a normal distribution with mean ̂𝜇 and
standard deviation ̂𝜏 (Figure 16.2).
This meta-analysis highlights an important point:that the overall effect
size estimate ̂𝜇 represents only the mean population effect across studies.
It tells us nothing about how much the effects vary across studies. Thus,
we recommend always reporting the heterogeneity estimate ̂𝜏 , prefer-
ably along with other related metrics that help summarize the distribu-
tion of effect sizes across studies (Riley, Higgins, and Deeks 2011; Wang
and Lee 2019; Mathur and VanderWeele 2019, 2020a). Reporting the
heterogeneity helps readers know how consistent or inconsistent the ef-
fects are across studies, which may point to the need to investigate mod-
erators of the effect (i.e., factors that are associated with larger or smaller
effects, such as whether participants were adults or children).8

 DEPTH

Single-paper meta-analysis and pooled analysis
Thus far, we have described meta-analysis as a tool for summarizing results reported across multiple papers. How-
ever, some people have argued that meta-analysis should also be used to summarize the results of multiple studies
reported in a single paper (Goh, Hall, and Rosenthal 2016). For instance, in a paper where you describe 3 different
experiments on a hypothesis, you could (1) extract summary information (e.g., M’s and SD’s) from each study, (2)
compute the effect size, and then (3) combine the effect sizes in a meta-analysis.
Single-paper meta-analyses come with many of the same strengths and weaknesses we have discussed thus far. One
unique weakness, though, is that having a small number of studies means that you typically have low power to
detect heterogeneity and moderators. This lack of power sometimes leads researchers to claim that there are no
significant differences between their studies. But an alternative explanation is that there simply wasn’t enough
power to detect those differences!
As an alternative, you can also pool the actual data from the three studies, as opposed to just pooling summary
statistics. For example, if you have data from 10 participants in each of the 3 experiments, you could pool them into
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a single dataset with 30 participants and include random effects of your condition manipulation across experiments
(as described in Chapter 7). This strategy is often referred to as pooled or integrative data analysis (and occasionally
as “mega-analysis”, which sounds cool).

Figure 16.3: Meta-analysis vs. pooled data analysis.

One of the benefits of pooled data analysis is that it can give you more power to detect moderators. For instance,
imagine that the effect of an intergroup contact treatment is moderated by age. If we performed a traditional
meta-analysis, we would only have three observations in our data set, yielding very low power. However, we have
many more observations (and much more variation in the moderator) in the pooled data analysis, which can lead
to higher power (Figure 16.3).
Pooled data analysis is not without its own limitations (Cooper and Patall 2009). And, of course, sometimes it
doesn’t make as much sense to pool datasets (e.g., when measures are different from one another). Nonetheless,
we believe that pooled data analysis and meta-analysis are both useful tools to keep in mind in a paper reporting
multiple experiments!

16.2 Bias in meta-analysis
Meta-analysis is a great tool for synthesizing evidence across studies, but
the accuracy of a meta-analysis can be compromised by bias. We’ll talk
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9 If you’re interested in assess-
ing within-study bias, you can
take a look at the Risk of Bias
tool (https://sites.google.com/site/
riskofbiastool/welcome/rob-2-0-tool)
developed by Cochrane, an organization
devoted to evidence synthesis.

about two categories of bias here: within-study and across-study biases.
Either type can lead to meta-analytic estimates that are too large, too
small, or even in the wrong direction altogether.

16.2.1 Within-study biases
Within-study biases – such as demand characteristics, confounds, and
order effects, all discussed in Chapter 9 – not only impact the validity
of individual studies, but also any attempt to synthesize those studies.
And of course, if individual study results are affected by analytic flexi-
bility (𝑝-hacking), meta-analyzing these will result in inflated effect size
estimates. In other words: garbage in, garbage out.
For example, Paluck, Green, and Green (2019) noted that early stud-
ies on intergroup contact almost exclusively used non-randomized de-
signs. Imagine a hypothetical study where researchers studied a com-
pletely ineffective intergroup contact intervention, and non-randomly
assigned low-prejudice people to the intergroup contact condition and
high-prejudice people to the control condition. In a scenario like this,
the researcher would of course find that the prejudice was lower in the
intergroup contact condition. But the effect would not be a true contact
intervention effect, but rather a spurious effect of non-random assign-
ment (i.e., confounding). Now imagine meta-analyzing many studies
with similarly poor designs. The meta-analyst might find impressive
evidence of an intergroup contact effect, even if none existed.
To mitigate this problem, meta-analysts often exclude studies that
may be especially affected by within-study bias. (For example, Paluck,
Green, and Green 2019 excluded non-randomized studies). Of course,
these decisions can’t be made on the basis of their effects on the
meta-analytic estimate or else this post-hoc exclusion itself will lead to
bias! For this reason, inclusion and exclusion criteria for meta-analyses
should be preregistered whenever possible.
Sometimes certain sources of bias cannot be eliminated by excluding
studies – often because studies in a particular domain share certain fun-
damental limitations (for example, attrition in drug trials). After data
have been collected, meta-analysts should also assess studies’ risks of bias
qualitatively using established rating tools (Sterne et al. 2016). Doing so
allows the meta-analyst to communicate how much within-study bias
there may be.9

Meta-analysts can also conduct sensitivity analyses to assess how much
results might be affected by different within-study biases or by exclud-
ing certain types of studies (Mathur and VanderWeele 2022). For exam-
ple, if nonrandom assignment is a concern, a meta-analyst may run the

https://sites.google.com/site/riskofbiastool/welcome/rob-2-0-tool
https://sites.google.com/site/riskofbiastool/welcome/rob-2-0-tool
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analyses including only randomized studies, versus including all stud-
ies, in order to determine how much including nonrandomized stud-
ies changes the meta-analytic estimate. These two options parallel our
discussion of experimental preregistration in Chapter 11: To allay con-
cerns about results-dependent meta-analysis, researchers can either pre-
register their analyses ahead of time or else be transparent about their
choices after the fact. Sensitivity analyses can allay concerns that a spe-
cific choice of exclusion criteria is critically related to the reported re-
sults.

16.2.2 Across-study biases
Across-study biases occur if, for example, researchers selectively report
certain types of findings or selectively publish certain types of findings
(publication bias, as discussed in Chapter 3 and Chapter 11). Often,
these across-study biases favor statistically-significant positive results,
which means the meta-analytic estimate based on those studies will be
inflated relative to the true effect.

 ACCIDENT REPORT

Quantifying publication bias in the social sciences
It’s typically very hard to quantify publication bias because you don’t know how many studies are out there in
researchers’ “file drawers” – unpublished studies are by definition not available. But a recent study took advantage
of a unique opportunity to try and quantify publication bias within a known pool of studies.
Time-sharing Experiments in the Social Sciences (TESS) is an innovative project that lets researchers apply to run
experiments on nationally-representative samples in theU.S. In 2014, Franco, Malhotra, and Simonovits (2014) and
colleagues took advantage of this application process by examining the entire population of 221 studies conducted
through TESS.
Using this information, Franco and colleagues examined the records of these studies to determine whether the
researchers found statistically significant results, a mixture of statistically significant and non-significant results, or
only non-significant results. Then, they examined the likelihood that these results were published in the scientific
literature.
Over 60% of studies with statistically significant results were published, compared to a mere 25% of studies that
produced only statistically non-significant results. This finding was important because it quantified how strong
publication bias actually was, at least in one particular population of studies. This estimate may not be general: for
example, perhaps TESS studies were easier to put in the file drawer because they cost nothing for the researchers
to run. But even a lower level of publication bias can have a substantial effect on a meta-analysis, meaning that it
is crucial to check for – and potentially, correct for – publication bias.

Like within-study biases, meta-analysts often try to mitigate across-
study biases by being careful about what studies make it into the
meta-analysis. Meta-analysts don’t only want to capture high-profile,
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10 Evidence is mixed regarding whether
including gray literature actually reduces
across-study biases in meta-analysis
(Tsuji et al. 2020; Mathur and Van-
derWeele 2021), but it is still common
practice to try to include this literature.

published studies on their effect of interest, but also studies pub-
lished in low-profile journals and the so-called “gray literature” [i.e.,
unpublished dissertations and theses; Lefebvre et al. (2019)].10

There are also statistical methods to help assess how robust the results
may be to across-study biases. Among the most popular tools to assess
and correct for publication bias is the funnel plot (Duval and Tweedie
2000; Egger et al. 1997). A funnel plot shows the relationship between
studies’ effect estimates and their precision (usually their standard error).
These plots are called “funnel plots” because if there is no publication
bias, then as precision increases, the effects “funnel” towards the meta-
analytic estimate. As the precision is smaller, they spread out more be-
cause of greater measurement error. Figure 16.4 is an example of one
type of funnel plot (Mathur and VanderWeele 2020b) for a simulated
meta-analysis of 100 studies with no publication bias.

Figure 16.4: Significance funnel plot
for a meta-analysis simulated to have no
publication bias. Orange points: stud-
ies with 𝑝 < 0.05 and positive esti-
mates. Grey points: studies with 𝑝 ≥
0.05 or negative estimates. Black dia-
mond: random-effects estimate of 𝜇.

CODE

For this plot, we use the PublicationBias package and the significance_funnel() function. (An alternative
function is the metafor function funnel(), which results in a more “classic” funnel plot.) We use our fittedmodel
re_model:

significance_funnel(yi = re_model$yi, vi = re_model$vi)

Because meta-analysis is such a well-established method, many of the relevant operations are “plug and play.”
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11 Classic funnel plots look more like
Figure 16.5). Our version is different
in a couple of ways. Most prominently,
we don’t have the vertical axis reversed
(which we think is confusing). We also
don’t have the left boundary highlighted,
because we think folks don’t typically se-
lect for negative studies.

Figure 16.5: Classic funnel plot.

As implied by the “funnel” moniker, our plot looks a little like a funnel.
Larger studies (those with smaller standard errors) cluster more closely
around the mean of 0.34 than do smaller studies, but large and small
studies alike have point estimates centered around the mean. That is,
the funnel plot is symmetric.11

Not all funnel plots are symmetric! Figure 16.6 is what happens to our
hypothetical meta-analysis if all studies with 𝑝 < 0.05 and positive es-
timates are published, but only 10% of studies with 𝑝 ≥ 0.05 or with
negative estimates are published. The introduction of publication bias
dramatically inflates the pooled estimate from 0.34 to 1.15. Also, there
appears to be a correlation between studies’ estimates and their stan-
dard errors, such that smaller studies tend to have larger estimates than
do larger studies. This correlation is often called funnel plot asymmetry
because the funnel plot starts to look like a right triangle rather than a
funnel. Funnel plot asymmetry can be a diagnostic for publication bias,
though it isn’t always a perfect indicator, as we’ll see in the next subsec-
tion.

16.2.1 Across-study bias correction
How do we identify and correct bias across studies? Given that some
forms of publication bias induce a correlation between studies’ point
estimates and their standard errors, several popular statistical methods,
such as Trim-and-Fill (Duval and Tweedie 2000) and Egger’s regression
(Egger et al. 1997) are designed to quantify funnel plot asymmetry.
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Figure 16.6: Significance funnel plot for
the same simulated meta-analysis after
publication bias has occurred. Orange
points: studies with 𝑝 < 0.05 and posi-
tive estimates. Grey points: studies with
𝑝 ≥ 0.05 or negative estimates. Black di-
amond: random-effects estimate of 𝜇.

12 High-level overviews of selection
models are given in McShane, Böck-
enholt, and Hansen (2016) and Maier,
VanderWeele, and Mathur (2022). For
more methodological detail, see Hedges
(1984), Iyengar and Greenhouse (1988),
and Vevea and Hedges (1995). For a tu-
torial on fitting and interpreting selec-
tion models, see Maier, VanderWeele,
and Mathur (2022). For sensitivity
analyses, see Mathur and VanderWeele
(2020b).

Funnel plot asymmetry does not always imply that there is publication
bias, though. Nor does publication bias always cause funnel plot asym-
metry. Sometimes funnel plot asymmetry is driven by genuine differ-
ences in the effects being studied in small and large studies (Egger et al.
1997; Lau et al. 2006). For example, in a meta-analysis of intervention
studies, if the most effective interventions are also the most expensive
or difficult to implement, these highly effective interventions might be
used primarily in the smallest studies (“small study effects”).
Funnel plots and relatedmethods are best suited to detecting publication
bias in which (1) small studies with large positive point estimates are
more likely to be published than small studies with small or negative
point estimates; and (2) the largest studies are published regardless of
the magnitude of their point estimates. That model of publication bias
is sometimes what is happening, but not always!
A more flexible approach for detecting publication bias uses selection
models. These models can detect other forms of publication bias that
funnel plotsmay not detect, such as publication bias that favors significant
results. We won’t cover these methods in detail here, but we think
they are a better approach to the question, along with related sensitivity
analyses.12

You may also have heard of “𝑝-methods” to detect across-study biases
such as 𝑝-curve and 𝑝-uniform (Simonsohn, Nelson, and Simmons
2014; Van Assen, Aert, and Wicherts 2015). These methods essentially
assess whether the significant 𝑝-values “bunch up” just under 0.05,
which is taken to indicate publication bias. These methods are increas-
ingly popular in psychology and have their merits. However, they are
actually simplified versions of selection models (e.g., Hedges 1984) that
work only under considerably more restrictive settings than the original
selection models [for example, when there is not heterogeneity across
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studies; McShane, Böckenholt, and Hansen (2016)]. For this reason, it
is usually (although not always) better to use selection models in place
of the more restrictive 𝑝-methods.
Going back to our running example, Paluck et al. used a regression-
based approach to assess and correct for publication bias. This approach
provided significant evidence of a relationship between the standard
error and effect size (i.e., an asymmetric funnel plot). Again, this asym-
metry could reflect publication bias or other sources of correlation be-
tween studies’ estimates and their standard errors. Paluck et al. also used
this same regression-based approach to try to correct for potential pub-
lication bias. Results from this model indicated that the bias-corrected
effect size estimate was close to zero. In other words, even though
all studies estimated that intergroup contact decreased prejudice, it is
still possible that there are unpublished studies that did not find this (or
found that intergroup contact increased prejudice).

 ACCIDENT REPORT

Garbage in, garbage out? Meta-analyzing potentially problematic research
Botox can help eliminate wrinkles. But some researchers have suggested that, when used to paralyze the muscles
associated with frowning, Botox may also help treat clinical depression. As surprising as this claim may sound, a
quick examination of the literature would lead many to conclude that this treatment works. Studies that randomly
assign depressed patients to receive either Botox or saline injections do indeed find that Botox recipients show
decreased depression. And when you combine all available evidence in a meta-analysis, you find that this effect is
quite large: d = 0.83, 95% CI [0.52, 1.14].
As Coles et al. (2019) argued though, this estimated effect may be impacted by both within- and between-study
bias. First, participants are not supposed to know whether they have been randomly assigned to receive Botox or a
control saline injections. But only one of these treatments leads the upper half of your face to be paralyzed! After
a couple weeks, you’re pretty likely to know whether you received the Botox treatment or control saline injection.
Thus, the apparent effect of Botox on depression could instead be a placebo effect.
Second, only 50% of the outcomes that researchersmeasuredwere reported in the final publications, raising concerns
about selective reporting. Perhaps researchers examining the effects of Botox on depression only reported the
measures that showed a positive effect, not the ones that didn’t.
Taken together, these two criticisms suggest that, despite the impressive meta-analytic estimate, the effect of Botox
on depression is far from certain.

16.3 Chapter summary: Meta-analysis
Taken together, Paluck and colleagues’ use of meta-analysis provided
several important insights that would have been easy to miss in a non-
quantitative review. First, despite a preponderance of non-significant
findings, intergroup contact interventions were estimated to decrease
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prejudice by on average 0.4 standard deviations. On the other hand,
there was considerable heterogeneity in intergroup contact effects, sug-
gesting important moderators of the effectiveness of these interventions.
And finally, publication bias was a substantial concern, indicating a need
for follow-up research using a registered report format that will be pub-
lished regardless of whether the outcome is positive (Chapter 11).
Overall, meta-analysis is a key technique for aggregating evidence across
studies. Meta-analysis allows researchers to move beyond the bias of
naive techniques like vote counting and towards a more quantitative
summary of an experimental effect. Unfortunately, a meta-analysis is
only as good as the literature it’s based on, so the aspiring meta-analyst
must be aware of both within- and between-study biases!

DISCUSSION QUESTIONS

1. Imagine that you read the following result in the abstract of a meta-analysis: “In 83 randomized studies of
middle school children, replacing one hour of class time with mindfulness meditation significantly improved
standardized test scores (standardized mean difference ̂𝜇 = 0.05; 95% confidence interval: [0.01, 0.09]; 𝑝 <
0.05).” Why is this a problematic way to report on meta-analysis results? Suggest a better sentence to replace
this one.

2. As you read the rest of the meta-analysis, you find that the authors conclude that “These findings demonstrate
robust benefits of meditation for children, suggesting that test scores improve even when the meditation is intro-
duced as a replacement for normal class time.” You recall that the heterogeneity estimate was ̂𝜏 = 0.90. Do you
think that this result regarding the heterogeneity tends to support, or rather tends to undermine, the concluding
sentence of the meta-analysis? Why?

3. What kinds of within-study biases would concern you in the meta-analysis described in the prior two questions?
How might you assess the credibility of the meta-analyzed studies and of the meta-analysis as whole in light of
these possible biases?

4. Imagine you conduct a meta-analysis on a literature in which statistically significant results in either direction
are much more likely to be published that non-significant results. Draw the funnel plot you would expect to
see. Is the plot symmetric or asymmetric?

5. Why do you think small studies receive more weight in random-effects meta-analysis than in fixed-effects
meta-analysis? Can you see why this is true mathematically based on the equations given above, and can you
also explain the intuition in simple language?

READINGS

– A nice, free textbook with lots of good code examples: Harrer, M., Cuijpers, P., Furukawa, T., & Ebert, D.
(2022). Doing Meta-Analysis with R: A Hands-On Guide. Chapman & Hall/CRC Press. Available free online
at https://bookdown.org/MathiasHarrer/Doing_Meta_Analysis_in_R/.

https://bookdown.org/MathiasHarrer/Doing_Meta_Analysis_in_R/
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17 CONCLUSION

You’ve made it to the end of Experimentology, our (sometimes opin-
ionated) guide to how to run good psychology experiments. In this
book we’ve tried to present a unified approach to the why and how
of running experiments. This approach begins with the goal of doing
experiments:

Experiments are intended to make maximally unbiased,
generalizable, and precise estimates of specific causal
effects.

This formulation isn’t exactly how experiments are talked about in the
broader field, but we hope you’ve started to see some of the rationale
behind this approach. In this final chapter, we will briefly discuss
some aspects of our approach, as well how this approach connects
with our four themes, TRANSPARENCY, MEASUREMENT PRECISION, BIAS
REDUCTION, and GENERALIZABILITY. We’ll end by mentioning some
exciting new trends in the field that give us hope about the future of
experimentology and psychology more broadly.

17.1 Summarizing our approach
The Experimentology approach is grounded in both an appreciation of
the power of experiments to reveal important aspects about human psy-
chology and also an understanding of the many ways that experiments
can fail. In particular, the “replication crisis” (Chapter 3) has revealed
that small samples, a focus on dichotomous statistical inference, and a
lack of transparency around data analysis can lead to a literature that is
often neither reproducible nor replicable. Our approach is designed to
avoid these pitfalls.
We focus on MEASUREMENT PRECISION in service of measuring causal ef-
fects. The emphasis on causal effects stems from an acknowledgement of
the key role of experiments in establishing causal inferences (Chapter 1)
and the importance of causal relationships to theories (Chapter 2). In
our statistical approach, we focus on estimation (Chapter 5) and mod-
eling (Chapter 7), helping us to avoid some of the fallacies that come
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along with dichotomous inference (Chapter 6). We choose measures to
maximize reliability (Chapter 8). We prefer simple, within-participant
experimental designs because they typically result in more precise es-
timates (Chapter 9). And we think meta-analytically about the over-
all evidence for a particular effect beyond our individual experiment
(Chapter 16).
Further, we recognize the presence of many potential sources of bias
in our estimates, leading us to focus on BIAS REDUCTION. In our mea-
surements, we identify arguments for the validity of our measures, de-
creasing bias in estimation of the key constructs of interest (Chapter 8);
in our designs we seek to minimize bias due to confounding or exper-
imenter effects (Chapter 9). We also try to minimize the possibility of
bias in our decisions about data collection (Chapter 12) and data analysis
(Chapter 11). Finally, we recognize the possibility of bias in literatures
as a whole and consider ways to compensate in our estimates (Chap-
ter 16).
Finally, we consider GENERALIZABILITY throughout the process. We the-
orize with respect to a particular population (Chapter 2) and select our
sample in order to maximize the generalizability of our findings to that
target population (Chapter 10). In our statistical analysis, we take into
account multiple dimensions of generalizability, including across par-
ticipants and experimental stimulus items (Chapter 7). And in our re-
porting, we contextualize our findings with respect to limits on their
generalizability (Chapter 14).
Woven throughout this narrative is the hope that embracing TRANS-
PARENCY throughout the experimental process will help you maximize
your work. Not only is sharing your work openly an ethical responsibil-
ity (Chapter 4), it’s also a great way to minimize errors while creating
valuable products that both advance scientific progress and accelerate
your own career (Chapter 13).

17.2 Forward the field
We have focused especially on reproducibility and replicability issues,
but we’ve learned at various points in this book that there’s a replica-
tion crisis (Open Science Collaboration 2015), a theory crisis (Oberauer
and Lewandowsky 2019), and a generalizability crisis (Yarkoni 2020) in
psychology. Based on all these crises, you might think that we are pes-
simistic about the future of psychology. Not so.
There have been tremendous changes in psychological methods since
we started teaching Experimental Methods in 2012. When we began,
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it was common for incoming graduate students to describe the ram-
pant 𝑝-hacking they had been encouraged to do in their undergraduate
labs. Now, students join the class aware of new practices like preregis-
tration and cognizant of problems of generalizability and theory build-
ing. It takes a long time for a field to change, but we have seen tremen-
dous progress at every level – from government policies requiring trans-
parency in the sciences all the way down to individual researchers’ adop-
tion of tools and practices that increase the efficiency of their work and
decrease the chances of error.
One of the most exciting trends has been the rise of meta-science, in
which researchers use the tools of science to understand how to make
science better (Tom E. Hardwicke et al. 2020). Reproducibility and
replicability projects (reviewed in Chapter 3) can help us measure the
robustness of the scientific literature. In addition, studies that evaluate
the impacts of new policies (e.g., Tom E. Hardwicke et al. 2018) –
can help stakeholders like journal editors and funders make informed
choices about how to push the field towards more robust science.
In addition to changes that correct methodological issues, the last ten
years have seen the rise of “big team science” efforts that advance the
field in new ways (Coles et al. 2022). Collaborations such as the Psy-
chological Science Accelerator (Moshontz et al. 2018) and ManyBabies
(Frank et al. 2017) allow hundreds of researchers from around the world
to come together to run shared projects. These projects are enabled by
open science practices like data and code sharing, and they provide a
way for researchers to learn best practices via participating. In addition,
by including broader and more diverse samples they can help address
challenges around generalizability (Klein et al. 2018).
Finally, the last ten years have seen huge progress in the use of statisti-
cal models both for understanding data (McElreath 2018) and for de-
scribing specific psychological mechanisms (Ma, Körding, and Goldre-
ich 2022). In our own work we have used these models extensively and
we believe that they provide an exciting toolkit for building quantita-
tive theories that allow us to explain and to predict the human mind.

17.3 Final thoughts
Doing experiments is a craft, one that requires practice and attention.
The first experiment you run will have limitations and issues. So will
the 100th. But as you refine your skills, the quality of the studies you
design will get better. Further, your own ability to judge others’ exper-
iments will improve as well, making you a more discerning consumer
of empirical results. We hope you enjoy this journey!
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A INSTRUCTOR’S GUIDE

A.1 Introduction
This is an instructor’s guide to conducting replication projects in courses.
In addition to benefiting the field in ways that have been previously dis-
cussed by some of the authors of this book (e.g., Hawkins et al. (2018),
Frank and Saxe (2012)), replication-based courses can additionally ben-
efit students in these courses. In this guide, we will describe these bene-
fits, explore differentways inwhich coursesmay bemodified depending
on student level and resources, and provide some guidelines and exam-
ples to help you set up the logistics of your course.

A.2 Why Teach a Project-Based Course?
Over the years, we have observed many ways in which our replication-
based courses benefited students above and beyond a more traditional
lecture and problem set-based course. Some of these benefits include:

– Student interest: Since each student will be free to replicate a
study that is aligned with their research interests, this freedom fa-
cilitates a more direct application of course methods and lessons
to a project that is interesting to each student.

– Usefulness: If this course is taught in the first year of the program
(as recommended), students may use their replication project as
a way to establish robustness of a phenomenon before building
studies on top of it.

– Realism: Practice datasets that are typically provided for course
exercises lack the complexity and messiness of real data. By con-
ducting a replication project and dealing with real data, students
learn to apply the tools provided in the course in a way that more
closely demonstrates their usefulness beyond the course.

– Intuition: Presentations of replication outcomes across the class
along with a discussion of what factors seemed to predict these
outcomes helps students develop a better intuition when reading
the literature for how likely studies are to replicate.
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– Perspective: Frustrating experiences with ambiguity (whether re-
garding experimental methods, materials, or analyses) can moti-
vate students to adopt best practices for their own future studies.

A project-based course may look very different depending on student
level (undergraduate vs. graduate/post-doc level) and availability of re-
sources at your institution for a course like this, namely in terms of TA
support and course funding (for data collection). For most of this guide,
we will assume that you have a similar setup to ours (i.e., teaching at the
graduate/post-doc level and have course funding and TAs to support
the course), but we have also spent some time considering ways to ad-
just the course to fit different student levels and availability of resources
(see “Scenarios for different course layouts”).

A.3 Logistics
A.3.1 Syllabus considerations
If it is your first time teaching this course, youmaywant to decide ahead
of time whether your course will mainly focus on content, or whether
you will cover both content and relevant practical skills. For instance,
if the course is for undergraduate students, you may decide to focus
mainly on content, whereas if the course is for graduate students, they
may find it more useful if the course covers both content and practical
skills they can use in their research.
Another important consideration is how long your course will be. De-
pending on whether your university operates on quarters or semesters,
the pace of the course will differ. For Psych 251, since we are on the
quarter system, we use the 10-week schedule shown below. However,
we have also adapted this schedule to a 16-week course given that it
better represents a majority of other institutions’ academic calendars. At
the end of this chapter, we give a set of sample class schedules.

A.3.2 Grading
Depending on your course format and teaching philosophy, you may
have preferred grading criteria. As a point of reference, in Psych 251,
we wanted to encompass both the assignments (problemsets and project
components) as well as actual course attendance and participation. In
addition, because the replication project is a central part of the course,
we weighted the project components slightly more than the problem
sets:

– 40%: Problem sets (four, at 10% each)
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– 50%: Final project components, including presentations, data col-
lection, analysis, and writeup

– 10%: Attendance and participation in class

A.3.3 Course budget
For our course, we usually receive around US$1,000 for course
funding from the Psychology Department. In addition, when students
from other departments are enrolled, we have been lucky to receive
additional funding from those departments as well, to further support
the course. Still, making sure that the course funds cover all students’
projects is one of the most challenging parts of the course. Assuming
you have a budget to work with, here are some lessons we’ve learned
along the way regarding budgeting (and if you don’t have any funding,
please refer to the section titled “Course Funding” under “Scenarios
for different course layouts”):

– Before students pick their study to replicate, provide them with
an estimate of how many participant hours they will be able to
receive for their project

– As soon as students pick a study for their replication project, help
each student run a power analysis to confirm that replicating the
study would be within the budget (TAs can help with this)

– If a student feels strongly about a study that does not fit within the
budget, consider the followingways to adjust the study: 1) can the
study be made shorter by cutting out unnecessary measures? 2) if
it is a multi-trial study, can the number of trials be reduced? 3)
would their advisors be willing to provide additional funding? 4)
can the study be run on university participant pools?

– As mentioned above, if there are students from other departments
who are enrolled in your course, one possibility to obtain more
funding is to reach out to the heads of those departments to see
whether they would be willing to help support your course.

Once all projects have been approved as within-budget, we encourage
you to create a shared spreadsheet containing each student’s name, so
that they can fill in the details of their replication project. Ultimately,
this will help ensure that students are paying fair wages to their partici-
pants and keep track of how the course funds are being divided up.

A.3.4 Course-related Institutional Review Board application
While it may be possible to apply for individual IRB approval for each
student’s project, we recommend applying for course-wide standard
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IRB approval for all replication projects that are conducted in your class.
Contacting your review board early in the planning stages of the course
should clarify what options you have available.
One important thing to remember when students run their individual
projects is that they should have the course-wide consent form at the
beginning of their studies (and TAs should check this when they review
the paradigms). For reference, this is the consent form that each student
is required to post at the beginning of their study:
“By answering the following questions, you are participating in a study
being performed by cognitive scientists in the Stanford Department of
Psychology. If you have questions about this research, please contact us
at stanfordpsych251@gmail.com. You must be at least 18 years old to
participate. Your participation in this research is voluntary. You may
decline to answer any or all of the following questions. You may de-
cline further participation, at any time, without adverse consequences.
Your anonymity is assured; the researchers who have requested your
participation will not receive any personal information about you.”

A.4 Scenarios for different course layouts
Now that we have covered the standard format of the course, we want
to now turn our attention to ways in which this format can be tweaked
in order to fit different needs and resources. We have organized this
section into two main categories: student level, and course resources
(such as TAs and course funding).

A.4.1 Student level
While Psych 251 at Stanford is geared towards graduate students (and
is currently a required class for entering first-year graduate students in
the Psychology Department), we also accept advanced undergraduate
students as well as graduate students from other departments (e.g., Edu-
cation, Human-Computer Interaction, Philosophy, Computer Science).
On the first day of our course, we tell students that they should be com-
fortable with two of the three following topics:

1) Some knowledge of psychological experimentation & subject
matter

2) Statistical programming: things like functions and variables
3) Basic statistics like ANOVA and t-test
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If students are only comfortable with one of the three topics above, we
warn them ahead of time that the course may demand more time from
them than the average student.
Now, if you are planning on catering this course for undergraduate stu-
dents, chances are that they have had less exposure to these topics over-
all, so there are multiple ways to calibrate the course accordingly:

1) Prerequisites: Require students to have completed courses that
cover at least two of the three topics mentioned above (i.e., a psy-
chology class, a class that covers statistical programming, a class
that covers basic statistics, any two of the three).

2) Pace: unlike Psych 251, where the entire course only lasts 10
weeks, a class for undergraduates may benefit from a slower pace,
allowing more time to cover the foundational principles before
diving into the project. For instance, the course could be held
over multiple academic semesters/quarters, with the project goal
of Course #1 being choosing and planning the replication study,
and the project goal of Course #2 being the execution and inter-
pretation of the replication.

3) Pair-Group-Based Projects: In our course, each student is
required to conduct their own replication project. However, this
structure may be overwhelming for undergraduate students who
may have less confidence taking on an entire replication project
by themselves. One option that may alleviate this pressure is to
have students conduct these projects as pairs or as small teams, so
that they can collectively draw on each others’ strengths. When
assigning these pairs or teams, it may be especially helpful to try
to ensure a relatively even balance of students who are confident
in each of the three areas outlined above (psychology, statistical
programming, basic statistics).

Now that we’ve offered a few suggestions to address different student
levels, let’s dive into the issue of course resources.

A.4.2 Course resources
We think there are twomainways inwhich your coursemay have differ-
ent resources from our model: In terms of course assistance (i.e., teach-
ing assistants), and in terms of course funding for student projects. We’ll
explore ways to work around each of these in this section:
Teaching assistants
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1 This approach does cancel out some
of the benefits of a project-based course
we mentioned at the start – namely, the
project will likely no longer fit each stu-
dent’s specific research interest, so there
may be less benefit in terms of specific
student interest and usefulness for their
program of research, but the other two
benefits of realism and intuition (espe-
cially if the project is discussed in the
context of other replication findings) still
stand.

As a point of comparison, in general, 2-3 teaching assistants are allo-
cated to Psych 251, which enrolls about 36 students, which comes out to
about 12-18 students per TA. Since a project-based course requires indi-
vidual attention and feedback, we would recommend against a student-
TA ratio that is much higher than that. That means that if you know
you will have just one TA for the class, you should think about reduc-
ing the enrollment cap accordingly. But what if you have no TAs? With
some adjustments, there are still ways you can make the course work
sans-TA; we outline a few ideas below:

1) Peer grading: As an instructor with no TAs, the area that will
require the biggest lift in terms of time and attention is grading.
One way to overcome this is to introduce a peer-grading system,
in which students grade each others’ work. If you choose this
route, two things thatmay encourage fair grading among your stu-
dents is to 1) distribute a clear and specific rubric that reduces the
amount of subjectivity in the grading process as much as possible,
and 2) anonymize the assignments so that students do not know
whose assignment they are grading. If possible, it may again be
beneficial to assign grading pairs that consist of students that are
relatively knowledgeable in different areas, so that they can pro-
vide feedback that address weak points in each others’ work.

2) Collective troubleshooting: The second most time intensive area
you will have to make up for is the amount of troubleshooting
you may have to do for students who run into issues implement
their projects, anywhere from getting GitHub and RMarkdown
up and running on their devices, to trouble with data collection
on Mechanical Turk. One way to encourage communal support
among your students is to set up a central discussion board for the
course (e.g., Piazza or a course channel on Slack) where students
can publicly (but anonymously, if desired) post issues they are run-
ning into. Then, you can offer extra credit to students who help
troubleshoot these issues, in order to further incentivize collec-
tive troubleshooting. There will likely still be issues that cannot
be addressed by the students, but this system at least frees up your
time to focus your attention on those that only you can address.

3) Single class-wide project: Finally, if the collective grading and
troubleshooting methods outlined above do not cut down on
enough time, you could consider walking through a single
replication project as a class.1 To make a single-project course
work, you could have students nominate studies they would
like to replicate as a class, and then have them vote on the final
choice. Once the target study has been selected, every student
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can individually carry out all the steps of the project, including
preregistering and writing up the analysis script. Then, setting
up and running the data collection phase can happen during
class, and once data has been collected, you can distribute it to
the students for them to run it through their analysis script and
interpret the result. Whether you choose to have students grade
each others’ work or whether you grade their work yourself, the
fact that the project is standardized should cut down on a lot of
the time you would otherwise spend learning about the details
of every individual project.

Course funding
In addition to availability of TAs, another way in which your course
may be different from ours is in terms of course funding. If you have
little or not funding for your course (even after reaching out to relevant
members of your department or institution), we suggest the following
adjustments:

1) Pair-Group-Based Projects: Similarly to suggestion #3 for ad-
dressing different student levels, one option for limited course
budgets is to have students conduct the replication projects as pairs
or teams to reduce the cost of data collection. This structure may
have the added benefit of encouraging students to problem-solve
together. Alternatively, each student in the pairs or teams could
complete each step of the replication individually (e.g., writing
up the report, analyzing the data, interpreting the result), which
would ensure that each student takes full responsibility for every
step of the project. This structure may also provide opportunities
for interesting discussions at the end of the course around ana-
lytic reproducibility, especially if students in the same teams (with
the same dataset) differed in the conclusions they drew about the
replication outcome.

2) Funding from Advisors: In some cases, students come to us with
target studies that require more funding than we are able to al-
locate, but that they feel particularly invested in (e.g., because of
how relevant the study is to their line of research). Once we rule
out other ways of making the study fit our budget (e.g., dropping
extra control conditions, running a subset of the study), we often
ask students whether their advisor would be willing to fund the
study. We have found that advisors are often willing to do this,
especially if the replication could serve an important role in the
development of the student’s research program. Similarly, one
way to reduce the burden on a limited course budget would be
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2 https://github.com/psych251

to encourage all students to first ask their advisors about whether
they would be willing to fund part or all of the data collection
for the replication. While chances are that some advisors will be
unwilling or unable to do this, there should still be a meaningful
reduction in the number of projects the course will need to fund.

3) Reproduce a Replication: The suggestions above apply if you at
least have some amount of course funding, but what if you have
no funding at all? While there are obvious limitations to this so-
lution, one suggestion is to have students reproduce past public
replications. For instance, our course Github page2, contains pub-
lic repositories of all past replication projects that have been con-
ducted in our course. Since the data for each replication project
is available in these repositories, you could provide each of your
students with a dataset and the original paper associated with it,
and assign them to reproduce the results of the replication. Stu-
dents should then be able to follow each step of the replication
project described below (e.g., writing the report, identifying the
key analysis, running the analysis). This format will only work if
students do not view the original final replication reports that are
posted publicly for their project, so it may be necessary to be clear
about this at the beginning of the course.

For those of you who are working with a different course format
(whether in terms of student level or course resources), we hope these
suggestions were useful. If you try out a new idea in your course that
you found helpful, we would be thrilled if you shared them with us!

A.5 Sample course schedules
The sample syllabi laid out below are categorized along the following de-
cisions: 1) Material: whether the course focuses on just content or both
content and skills, and 2) Duration: whether the course is 10-weeks
long or 16-weeks long.
For undergraduate instructors, we have labelled advanced topics in pur-
ple. We expect that these topics are best suited for advanced under-
graduate students. As for content around statistics (e.g., Estimation, In-
ference), instructors should decide how much of this content to teach,
depending on how prepared students have been in previous classes.

https://github.com/psych251
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A.5.1 10 weeks
Table A.1: A sample 10-week syllabus with both skills and content materials.

Week Day Topic Chapter Appendix
1 M Class Introduction 1
1 W Theories 2
1 F Version Control B
2 M Reproducible reports 14 C
2 W Tidyverse Tutorial D
2 F Tidyverse Tutorial continued (with TAs)
3 M Measurement, Reliability, and Validity 8
3 W Design of Experiments 9
3 F Sampling 10
4 M Project Management 13
4 W Experiments 1: Simple survey experiments using Qualtrics
4 F Experiments 2: Project-specific Implementation (TAs)
5 M Estimation 5
5 W Inference 6
5 F Sample Size Planning
6 M Survey Design
6 W Midterm Presentations 1
6 F Midterm Presentations 2
7 M Preregistration 11
7 W Meta-analysis 16
7 F Open Science 3
8 M Visualization 1 15 E
8 W Visualization 2
8 F Exploratory Data Analysis Workshop
9 M Sampling, Representativeness, and Generalizability 4
9 W Data and Participants Ethics 12
9 F Authorship and Research Ethics
10 M Open Discussion 17
10 W Final Project Presentations 1
10 F Final Project Presentations 2
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A.5.2 10 weeks, content only
Table A.2: A sample 10-week syllabus with only content materials.

Week Day Topic Chapter
1 M Class Introduction 1
1 W Theories 2
1 F Replication and reproducibility 3
2 M Open Science
2 W Measurement 8
2 F Design of experiments 1 9
3 M Design of experiments 2
3 W Sampling 10
3 F Experimental strategy
4 M Preregistration 11
4 W Data collection 12
4 F Visualization 1 15
5 M Visualization 2
5 W MIDTERM EXAM
5 F Introduction to statistics
6 M Estimation 1 5
6 W Estimation 2
6 F Inference 1 6
7 M Inference 2
7 W Models 1 7
7 F Models 2
8 M Meta-analysis 16
8 W Project management 13
8 F [Instructor-specific topics]
9 M Sampling, Representativeness, and Generalizability 4
9 W Data and Participants Ethics 12
9 F Authorship and Research Ethics
10 M Conclusion 17
10 W Conclusion
10 F FINAL EXAM
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A.5.3 16 weeks
Table A.3: A sample 16-week syllabus with both skills and content materials.

Week Day Topic Chapter Appendix
1 1 Class Introduction 1
1 2 Theories 2
2 1 Version Control B
2 2 Reproducible reports 14 C
3 1 Tidyverse Tutorial D
3 2 Tidyverse Tutorial continued (with TAs)
4 1 Measurement, Reliability, and Validity 8
4 2 Design of Experiments 9
5 1 Sampling 10
5 2 Project Management 13
6 1 Experiments 1: Simple survey experiments using Qualtrics
6 2 Experiments 2: Project-specific Implementation (TAs)
7 1 Estimation 5
7 2 Inference 6
8 1 Sample Size Planning
8 2 Survey Design
9 1 Midterm Presentations 1
9 2 Midterm Presentations 2
10 1 Preregistration 11
10 2 Meta-analysis 16
11 1 Open Science 3
11 2 Visualization 1 15 E
12 1 Visualization 2
12 2 Exploratory Data Analysis Workshop
13 1 Sampling, Representativeness, and Generalizability 4
13 2 Data and Participants Ethics 12
14 1 Authorship and Research Ethics
14 2 [Instructor-specific topics]
15 1 Open Discussion 17
15 2 Open Discussion
16 1 Final Project Presentations 1
16 2 Final Project Presentations 2
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A.5.4 16 weeks, content only
Table A.4: A sample 16-week syllabus with only content materials.

Week Day Topic Chapter
1 1 Class Introduction 1
1 2 Theories 2
2 1 Replication and reproducibility 3
2 2 Open Science
3 1 Measurement 8
3 2 Design of experiments 1 9
4 1 Design of experiments 2
4 2 Sampling 10
5 1 Experimental strategy
5 2 Preregistration 11
6 1 Data collection 12
6 2 Visualization 1 15
7 1 Visualization 2
7 2 MIDTERM EXAM
8 1 Introduction to statistics
8 2 Estimation 1 5
9 1 Estimation 2
9 2 Inference 1 6
10 1 Inference 2
10 2 Models 1 7
11 1 Models 2
11 2 Meta-analysis 16
12 1 Project management 13
12 2 [Instructor-specific topics]
13 1 [Instructor-specific topics]
13 2 Sampling, Representativeness, and Generalizability 4
14 1 Data and Participants Ethics
14 2 Authorship and Research Ethics
15 1 Ethics: Open Discussion
15 2 Conclusion 17
16 1 Conclusion
16 2 FINAL EXAM
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